Diabetes Mellitus tipo 3 e exercí­cio fí­sico: relações entre obesidade, resistência insulí­nica e distúrbios cognitivos

  • Letí­cia Andrade Cerrone Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Cauê Vazquez La Scala Teixeira Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Faculdade de Educação Fí­sica, Faculdade Praia Grande, Praia Grande-SP, Brasil.
  • Renata Astride Rebelo Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Danielle Arisa Caranti Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Departamento de Biociências, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Ricardo José Gomes Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Departamento de Biociências, Universidade Federal de São Paulo, Santos-SP, Brasil.
Palavras-chave: Doença de Alzheimer, Cognição, Obesidade, Diabetes mellitus, Exercício

Resumo

Introdução e objetivo: O Diabetes Mellitus tipo 3 (DM3) é um termo recentemente proposto para se referir à relação entre obesidade, resistência insulí­nica, diabetes mellitus tipo 2 e distúrbios cognitivos. O estudo apresenta evidências acerca do DM3, e mostra o papel do exercí­cio fí­sico como tratamento não farmacológico para o DM3. Materiais e Métodos: Foi realizada uma revisão de artigos publicados entre 2000 e 2016 nas bases de dados MEDLINE e LILACS. Todas as etapas do processo de revisão foram realizadas por dois pesquisadores independentes. Resultados e discussão: Verificou-se a relação de distúrbios neurológicos e cognitivos com alterações cardiometabólicas; resistência à insulina e o processo inflamatório presente na obesidade. O exercí­cio fí­sico (EF) teve efeitos benéficos em diversos fatores de risco para o DM3. O termo DM3 salienta a influência de condições como obesidade, resistência à insulina e diabetes mellitus tipo 2 no desenvolvimento da doença de Alzheimer. Conclusão: O EF mostrou ser uma importante estratégia de prevenção/tratamento do DM3. São necessários mais estudos sobre as modalidades de EF visando consolidar conhecimentos para a elaboração de diretrizes na prescrição do EF no contexto do DM3.

Referências

-Baldi, J.C.; Wilson, G.A.; Wilson, L.C.; Wilkins, G.T.; Lamberts, R.R. The Type 2 Diabetic heart: its role in exercise intolerance and the challenge to find effective exercise interventions. Sports Medicine. Vol. 46. Num. 11. 2016. p. 1605-1617

-Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the brain: there and back again. Pharmacological Therapy. Vol. 136. Num. 1. 2012. p. 82-93.

-Barnes, J.N. Exercise, cognitive function, and aging. Advances in Physiology Education. Vol. 39. Num. 2. 2015. p. 55-62.

-Besser, L.M.; Gill, D.P.; Monsell, S.E.; Brenowitz, W.; Meranus, D.H.; Kukull, W.; Gustafson, D.R. Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimer disease. Alzheimer Disiase & Associated Disorders. Vol. 28. Num. 1. 2014. p. 36-43.

-Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology. Vol. 5. Num. 1. 2006. p. 64-74.

-Blaž, K.M.; Švab, I. A multidisciplinary approach to treating obesity in a community health centre. Zdravstveno Varstvo. Vol. 54. Num. 4. 2015. p. 252-258.

-Bove, R.M.; Gerweck, A.V.; Mancuso, S.M.; Bredella, M.A.; Sherman, J.C.; Miller, K.K. Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity (Silver Spring). Vol. 24. Num. 4. 2016. p. 954-961.

-Cassilhas, R.C.; Lee, K.S.; Fernandes, J.; Oliveira, M.G.M.; Tufik, S.; Meeusen, R.; de Mello, M.T. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. Vol. 202. 2012. p. 309-317.

-Chen, W.W.; Zhang, X.; Huang, W.J. Role of physical exercise in Alzheimer’s disease. Biomedical Reports. Vol. 4. Num. 4. 2016. p. 403-407.

-Craft, S.; Watson, G.S. Insulin and neurodegenerative disease: shared and specific mechanisms. The Lancet Neurology. Vol. 3. Num. 3. 2004. p. 169-178.

-De La Monte, S.M.; Wands, J.R. Alzheimer’s disease is type 3 diabetes–evidence reviewed. Journal of Diabetes Science and Technology. Vol. 2. Num. 6. 2008. p. 1101-1113.

-Deak, F.; Sonntag, W.E. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. The Journal of Gerontololy. Series A, Biology Sciences and Mededical Sciences. Vol. 67. Num. 6. 2012. p. 611-625.

-Diegues, J.C.; Pauli, J.R.; Luciano, E.; de Almeida Leme, J.A.C.; de Moura, L.P.; Dalia, R.A.; de Araújo, M.B.; Sibuya, C.Y.; de Mello, M.A.; Gomes, R.J. Spatial memory in sedentary and trained diabetic rats: molecular mechanisms. Hippocampus. Vol. 24. Num. 6. 2014. p. 703-711.

-Dineley, K.T.; Jahrling, J.B.; Denner, L. Insulin resistance in Alzheimer’s disease. Neurobiology Disease. Vol. 72PA. 2014. p. 92-103.

-Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. Vol. 19, Num. 10. 2009. p.1030-1039.

-Formiga, F.; Rene, R.; Perez-Maraver, M. Dementia and diabetes: casual or causal relationship? Medicina Clínica (Barcelona). Vol. 144. Num. 4. 2015. p. 176-180.

-Golubnitschaja, O. Neurodegeneration: accelerated ageing or inadequate healthcare? EPMA Journal. Vol. 1. Num. 2. 2010. p. 211-215.

-Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism. Vol. 89. Num. 6. 2004. p. 2595-2600.

-Gustafson, D.; Rothenberg, E.; Blennow, K.; Steen, B.; Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Archives of Internal Medicine. Vol. 163. Num. 13. 2003. p. 1524-1528.

-Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology. Vol. 8. Num. 2. 2007. p. 101-112.

-Hernandez, S.S.S.; Sandreschi, P.F.; da Silva, F.C.; Arancibia, B.A.V.; da Silva, R.; Gutierres, P.J.B.; Andrade, A. What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. Journal of Aging and Physical Activity. Vol. 23. Num. 4. 2015. p; 659-668.

-Kim, B.K.; Shin, M.S.; Kim, C.J.; Baek, S.D.; Ko, Y.C.; Kim, Y.P. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. Journal of Exercise Rehabilitation. Vol. 10. Num. 1. 2014. p. 2-8.

-Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Alternative Medicine Review. Vol. 14. Num. 4. 2009. p. 373-379.

-Lee, I.H.; Seo, E.J.; Lim, I.S. Effects of aquatic exercise and CES treatment on the changes of cognitive function, BDNF, IGF-1, and VEGF of persons with intellectual disabilities. Journal of Exercise Nutrition & Biochemistry. Vol. 18. Num. 1. 2014. p. 19-24.

-Lokken, K.L.; Boeka, A.G.; Austin, H.M.; Gunstad, J.; Harmon, C.M. Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surgery for Obesity and Related Diseases. Vol. 5. Num. 5. 2009. p. 547-552.

-Ma, L.; Feng, M.; Qian, Y.; Yang, W.; Liu, J.; Han, R.; Zhu, H.; Li, Y. Insulin resistance is an important risk factor for cognitive impairment in elderly patients with primary hypertension. Yonsei Medical Journal. Vol. 56. Num. 1. 2015. p. 89-94.

-Michalak, A.; Mosinska, P.; Fichna, J. Common links between metabolic syndrome and inflammatory bowel disease: Current overview and future perspectives. Pharmacological Reports. Vol. 68. Num. 4. 2016. p. 837-846.

-Mittal, K.; Mani, R.J.; Katare, D.P. Type 3 diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer’s disease. Scientific Reports. Vol. 6. 2016. p. 25589.

-Mond, J.M.; Rodgers, B.; Hay, P.J.; Darby, A.; Owen, C.; Baune, B.T.; Kennedy, R.L. Obesity and impairment in psychosocial functioning in women: the mediating role of eating disorder features. Obesity (Silver Spring). Vol. 15. Num. 11. 2007. p. 2769-2779.

-Nguyen, J.C.D.; Killcross, S.; Jenkins, T.A. Obesity and cognitive decline: role of inflammation and vascular changes. Frontiers in Neuroscience. Vol. 8. Num. 375. 2014. p. 1-8.

-Ohman, H.; Savikko, N.; Strandberg, T.E.; Kautiainen, H.; Raivio, M.M.; Laakkonen, M.L.; Tilvis, R.; Pitkälä, K.H. Effects of exercise on cognition: the finnish Alzheimer disease exercise trial: a randomized, controlled trial. Journal of American Geriatrics Society. Vol. 64. Num. 4. 2016. p. 731-738.

-Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective effects of physical exercise in alzheimer’s disease and parkinson's disease: a narrative review. Journal of Clinical Neurology. Vol. 11. Num. 3. 2015. p. 212-219.

-Phillips, C.; Baktir, M.A.; Srivatsan, M.; Salehi, A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience. Vol. 8. Num. 170. 2014. p. 1-16.

-Rao, A.K.; Chou, A.; Bursley, B.; Smulofsky, J.; Jezequel, J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American Journal of Occupational Therapy. Vol. 68. Num. 1. 2014. p. 50-56.

-Redila, V.A.; Christie, B.R. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience. Vol. 137. Num. 4. 2006. p. 1299-1307.

-Sabia, S.; Nabi, H.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, A. Health behaviors from early to late midlife as predictors of cognitive function: The Whitehall II study. American Journal of Epidemiology. Vol. 170. Num. 4. 2009. p. 428-437.

-Slusher, A.L.; Whitehurst, M.; Zoeller, R.F.; Mock, J.T.; Maharaj, A.; Huang, C.J. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals. Journal of Neuroendocrinology. Vol. 27. Num. 5. 2015. p. 370-376.

-Solfrizzi, V.; Panza, F.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Grigoletto, F.; Maggi, S.; Del Parigi, A.; Reiman, E.M.; Caselli, R.J.; Scafato, E.; Farchi. G.; Capurso, A.; Italian Longitudinal Study on Aging Working Group. Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology. Vol. 63. Num. 10. 2004. p. 1882-1891.

-Stanford, K.I.; Goodyear, L.J. Exercise regulation of adipose tissue. Adipocyte. Vol. 5. Num. 2. 2016. p. 153-162.

-Verdile, G.; Keane, K.N.; Cruzat, V.F.; Medic, S.; Sabale, M.; Rowles, J.; Wijesekara, N.; Martins, R.N.; Fraser, P.E.; Newsholme, P. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators of Inflammation. Vol. 2015. Num. 6. 2015. p. 105828.

-Viola, K.L.; Klein, W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica. Vol. 129. Num. 2. 2015. p. 183-206.

-Watanabe, T.; Miyazaki, A.; Katagiri, T.; Yamamoto, H.; Idei, T.; Iguchi, T. Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia. Journal of American Geriatrics Society. Vol. 53. Num. 10. 2005. p. 1748-1753.

-Watts, A.S.; Loskutova, N.; Burns, J.M.; Johnson, D.K. Metabolic syndrome and cognitive decline in early Alzheimer’s disease and healthy older adults. Journal of Alzheimer's Disease. Vol. 35. Num. 2. 2013. p. 253-265.

-Westwood, A.J.; Beiser, A.; Decarli, C.; Harris, T.B.; Chen, T.C.; He, X.M.; Roubenoff, R.; Pikula, A.; Au, R.; Braverman, L.E.; Wolf, P.A.; Vasan, R.S.; Seshadri, S. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology. Vol. 82. Num. 18. 2014. p. 1613-1619.

-Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.J.; Yaffe, K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. Vol. 330. Num. 7504. 2005. p. 1360.

-Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin JD, Greenberg ME, Spiegelman BM. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metabolism. Vol. 18. Num. 5. 2013. p. 649-659.

-Yaffe, K.; Haan, M.; Blackwell, T.; Cherkasova, E.; Whitmer, R.A.; West, N. Metabolic syndrome and cognitive decline in elderly Latinos: findings from the Sacramento Area Latino Study of Aging study. Journal of American Geriatrics Society. Vol. 55. Num. 5. 2007. p. 758-762.

-Zhang, T.; Pan, B.S.; Sun, G.C.; Sun, X.; Sun, F.Y. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain. Neurochemistry International. Vol. 56. Num. 8. 2010. p. 955-961.

-Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology. Vol. 177. Num. 1-2. 2001. p. 125-134.

-Zhao, W.Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochimica et Biophysica Acta. Vol. 1792. Num. 5. 2009. p. 482-496.

Publicado
2018-06-25
Como Citar
Cerrone, L. A., La Scala Teixeira, C. V., Rebelo, R. A., Caranti, D. A., & Gomes, R. J. (2018). Diabetes Mellitus tipo 3 e exercí­cio fí­sico: relações entre obesidade, resistência insulí­nica e distúrbios cognitivos. RBONE - Revista Brasileira De Obesidade, Nutrição E Emagrecimento, 12(71), 336-345. Recuperado de http://www.rbone.com.br/index.php/rbone/article/view/706
Seção
Artigos Cientí­ficos - Original