Copper nutritional status and its relationships with oxidative stress in obese women

  • Thayanne Gabryelle Visgueira de Sousa Universidade Federal do Piauí
  • Mickael de Paiva Sousa Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Nilmara Cunha da Silva Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Lyandra Dias da Silva Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Stéfany Rodrigues de Sousa Melo Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Tamires da Cunha Soares Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Juliana Soares Severo Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Bianca Mickaela Santos Chaves Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.
  • Ana Raquel Soares de Oliveira Department of Nutrition, Federal University of Piauí, Campus Senador Helvídio Nunes de Barros, Picos, Piauí, Brazil.
  • Kyria Jayanne Clímico Cruz Department of Nutrition, Federal University of Piauí, Campus Senador Helvídio Nunes de Barros, Picos, Piauí, Brazil.
  • Moisés Tolentino Bento da Silva Physical Education Department, Federal University of Piauí, Teresina, Piauí, Brazil.
  • Carla Soraya Costa Maia Department of Nutrition, State University of Ceará, Fortaleza, Ceará, Brazil.
  • Dilina do Nascimento Marreiro Department of Nutrition, Federal University of Piauí, Campus Ministro Petronio Portella, Teresina, Piauí, Brazil.

Resumo

Background and Aims: Obesity is a disease that is characterized by the excessive accumulation of adipose tissue that favors the development of metabolic disorders such as those related to oxidative stress and appears to contribute to changes in the homeostasis of micronutrients involved in the production of free radicals such as copper. From this perspective, there is an interest in regard to identifying the possible influence of this mineral on the manifestation of oxidative stress in the context of obesity. Materials and methods: A total of 141 women were divided into the case group (BMI≥ 35 kg/m 2) and the control group (BMI between 18.5 and 24.9 kg/m2). Weight and height were measured, and BMI values were calculated. Dietary copper intake was obtained from a standard 3 day food record. Analyses of copper in plasma and erythrocytes were performed, and the concentrations of the enzymes superoxide dismutase, glutathione peroxidase, and catalase were determined. Additionally, serum concentrations of thiobarbituric acid-reactive substances were determined. Results: The amount of copper observed in the diets of obese women was higher than was that in the control group. Elevated copper concentrations in the plasma and a reduction in erythrocytes were observed, and high TBARS values and reduced activity of the erythrocyte superoxide dismutase enzyme were also observed in the case group compared to these values in the control group. Conclusion: Our study did not identify a correlation between the assessment parameters of nutritional status related to copper and the concentrations of TBARS in either group.

Referências

-Aebi, H. Catalase in vitro. Methods Enzymol. Vol. 105. 1984. p. 121-126.

-Anção, M.S.; Cuppari, L.; Draine, A.S.; Singulem, D. Nutwin Nutrition Support Program: version 1.5. São Paulo. Department of Health Informatics, SPDM, UNIFESP/EPM. 1 CDROM. 2002.

-Banach, W.; Nitschke, K.; Krajewska, N.; Mongiałło, W.; Matuszak, O.; Muszyński, J.; Skrypnik, D. The association between excess body mass and disturbances in somatic mineral levels. Int J Mol Sci. Vol. 21. Num. 19. 2020. p. 7306.

-Bertinato, J.; Sherrard, L.; Plouffe, L.J. Decreased erythrocyte CCS content is a biomarker of copper overload in rats. Int J Mol Sci. Vol. 11. Num. 7. 2010. p. 2624-2635.

-Brown, L.A.; Kerr, C.J.; Whiting, P.; Finer, N.; McEneny. J.; Ashton, T. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity. Vol. 17. Num. 3. 2009. p. 460-466.

-Burtis, C.A.; Ashwood, E.R. Fundamentals of Clinical Chemistry. Rio de Janeiro. Guanabara Koogan. 1998.

-Caimi, G.; Canino, B.; Montana, M.; Urso, C.; Calandrino, V.; Presti, R.L.; Hopps, E. Lipid Peroxidation, Protein Oxidation, Gelatinases, and Their Inhibitors in a Group of Adults with Obesity. Horm Metab Res. Vol. 51. Num. 6. 2019 p. 389-395.

-Chen, Y.Y.; Hong, H.; Lei, Y.T.; Zou, J.; Yang, Y.Y.; He, L.Y. IκB kinase promotes Nrf2 ubiquitination and degradation by phosphorylating cylindromatosis, aggravating oxidative stress injury in obesity-related nephropathy. Mol Med. Vol. 27. Num. 1. 2021. p. 137.

-Darroudi, S.; Fereydouni, N.; Tayefi, M.; Esmaily, H.; Sdabadi, F.; Khashyarmanesh, Z.; Tayefi, B.; Haghighi, H.M.; Timar, A.; Mohammadpour, H.; Gonoodi, K.; Ferns, G. A.; Hoseuni, S.J.; Ghayour-Mobarhan, M. Altered serum Zinc and Copper in Iranian Adults who were of normal weight but metabolically obese. Sci Rep. Vol. 9. Num. 14874. 2019.

-Fan, Y.; Zhang, C.; Bu, J. Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients. Vol. 9. Num. 2. 2017. p. 104.

-Feldman, A.; Aigner, E.; Weghuber, D.; Paulmichl, K. The potential role of iron and copper in pediatric obesity and nonalcoholic fatty liver disease. Biomed Res Int. Vol. 2015. Num. 287401. 2015. p. 1-7.

-Fisberg, R.M.; Marchioni, D.M.L.; Slater, B.; Martini, L.A. Food Surveys: Methods and Scientific Basis. São Paulo. Manole. 2005.

-Forouzesh, A.; Forouzesh, F.; Foroushani, S. S.; Forouzesh, A.; Zand, E. Um novo método para calcular o teor de cobre e determinar os níveis apropriados de cobre nos alimentos. Rev Chil Nutr. Vol. 48. Num. 6. 2021. p. 862-873.

-Freire, S.C.; Fisberg, M.; Cozzolino, S.M. Dietary intervention causes redistribution of zinc in obese adolescents. Biol Trace Elem Res. Vol. 154. Num. 2. 2013. p. 168-177.

-Furukawa S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. Vol. 114. Num. 12. 2004. p. 1752-1761.

-Ge, W.; Liu, W.; Liu, G. The relationships between serum copper levels and overweight/total obesity and central obesity in children and adolescents aged 6-18 years. J Trace Elem Med Biol. Vol. 61. 2020. p. 126557.

-Goossens, G.H. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. Vol. 10. Num. 3. 2017. p. 207-215.

-Gu, K.; Li, X.; Xiang, W.; Jiang, X. The relationship between serum copper and overweight/obesity: a meta-analysis. Biol Trace Elem Res. Vol.194. Num. 2. 2019. p. 336-347.

-Habib, S.A.; Saad, E.A.; Elsharkawy, A.A.; Attia, Z.R. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents. Advances in Medical Sciences. Vol. 60. Num. 2. 2015. p. 179-185.

-Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method. Biol Trace Elem Res. Vol. 160. Num. 1. 2014. p. 132-142.

-Harvey, L.J.; Majsak-Newman, G.; Dainty, J.R.; Lewis, D.J.; Langford, N.J.; Crews H.M.; Fairweather-Tait, S.J. Adaptive responses in men fed low- and high-copper diets. Br J Nutr. Vol. 90. Num. 1. 2003. p. 161-168.

-Hatano, S.; Nishi, Y.; Usui, T. Copper levels in plasma and erythrocytes in healthy Japanese children and adults. Am J Clin Nutr. Vol. 35. Num. 1. 1982. p. 120-126.

-Horn, R.C.; Gelatti, G.T.; Mori, N.C.; Tissiani, A. C.; Mayer, M.S.; Pereira, E.A.; Ross, M.; Moreira, P.R.; Bortolotto, J.W.; Felippin T. Obesity, bariatric surgery and oxidative stress. Rev Assoc Med Bras. Vol. 63. Num. 3. 2017. p. 229-235.

-IBGE. Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2008-2009: análise do consumo alimentar pessoal no Brasil. Rio de Janeiro. 2011.

-Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. Washington DC. National Academies Press. 2005.

-Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, cooper, iodine, iron, manganese, molybdenun, nickel, silicon, vanadium, and zinc. Washington DC. National Academies Press. 2001.

-Jaime, P.C.; Latorre, M.R.D.O.; Fornés, N.S.; Zerbini, C.A.F. Comparative study among two methods for energy adjustment for nutrient intake. Nutrire. Vol. 26. 2003. p.11-18.

-Jiang, S.; Ma, X.; Li, M.; Yan, S.; Zhao, H.; Pan, Y.; Wang, C.; Yao, Y.; Jin, L.; Li, B. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. adults using quantile regression analysis NHANES 2007-2014. PeerJ. Vol. 8. 2020. p. 9127.

-Keane, K.N.; Cruzat, V.F.; Carlessi, R.; Bittencourt-Jr, P.I.H.; Newsholme, P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev. Vol. 2015. Num. 181643. 2015. p. 1-15.

-Kim, O.Y.; Shin, M.J.; Moon, J.; Chung, J.H. Plasma ceruloplasmin as a biomarker for obesity: a proteomic approach. Clin Biochem. Vol. 44. Num. 5-6. 2011. p. 351-356.

-Lin, Z.; Gao, H.; Wang, B.; Wang, Y. Dietary copper intake and its association with telomere length: a population based study. Front Endocrinol. Vol. 9. 2008. p. 404.

-Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G. A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. Vol. 20. Num. 9. 2019. p. 2358.

-Manna, P.; Jain, S. K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. Vol. 13. Num. 10. 2015. p. 423-444.

-Marseglia, L.; Manti, S.; D’angelo, G.; Nicotera A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. Vol. 16. Num.1. 2014. p. 378-340.

-Milanino, R.; Conforti, A.; Franco, L.; Marrella, M.; Velo, G. Copper and inflammation--a possible rationale for the pharmacological manipulation of inflammatory disorders. Agents Actions. Vol. 16. Num. 6. 1985. p. 504-513.

-Morais, J.B.S.; Severo, J.S.; Santos, L.R.; Melo, S.R.S.; Santos, R.O.; Oliveira, A.R.S.; Cruz, K. J.C.; Marreiro, D.N. Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res. Vol. 176. Num. 1. 2017. p. 20-26.

-Niedzielski, P.; Siepak, M. Analytical methods for determining arsenic, antimony and selenium in environ mental samples. Pol J Environ Stud. Vol. 12. Num. 6. 2003. p. 653- 667.

-Nolasco, M.P.B. Clinical and Laboratory Diagnosis - Body Composition. IN Fisberg, M. Obesity in childhood and adolescence. São Paulo. Fundation BYK. 1995.

-Nunes, J.E.; Cunha, H.S.; Freitas, Z.R.; Nogueira, A.M.; Dâmaso, A.R.; Espindola, F. S.; Cheik, N.C. Interdisciplinary therapy changes superoxide dismutase activity and adiponectin in obese adolescents: a randomised controlled trial. J Sports Sci. Vol. 34. Num. 10. 2016. p. 945-950.

-Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Annal Biochem. Vol. 95. Num. 2. 1979. p. 351- 358.

-Ortega, R.M.; Rodriguez-Rodriguez, E.; Aparicio, A.; Jiménez-Ortega, A.I.; Palmeros, C.; Perea, J.M.; Navia, B.; López-Sobaler, A.M. Young children with excess of weight show an impaired selenium status. Int J Vitam Nutr Res. Vol. 82. Num. 2. 2012. p. 121-129.

-Prasad, A.S. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr. Vol. 1. Num.14. 2014.

-TACO. Tabela Brasileira de Composição de Alimentos. Campinas. 2011.

-Thillan, K.; Lanerolle, P.; Thoradeniya, T.; Samaranayake, D.; Chandrajith, R.; Wickramasinghe, P. Micronutrient status and associated factors of adiposity in primary school children with normal and high body fat in Colombo municipal area, Sri Lanka. BMC Pediatr. Vol. 21. Num. 1. 2021. p. 14.

-Tinkov, A.A.; Ajsuvakova, O.P.; Shehtman, A. M.; Boev, V.M.; Nikonorov, A. A. Influence of iron and copper consumption on weight gain and oxidative stress in adipose tissue of Wistar rats. Interdiscip Toxicol. Vol. 5. Num. 3. 2012. p. 127-132.

-Torkanlou, K.; Bibak, B.; Abbaspour, A.; Abdi, H.; Moghaddam, M.S.; Tayefi, M.; Mohammadzadeh, E.; Bana, H. S.; Aghasizade, M.; Ferns, G.A.; Avan, A.; Mobarhan, M. G. Reduced Serum Levels of Zinc and Superoxide Dismutase in Obese Individuals. Ann Nutr Metab. Vol. 69. Num. 3-4. 2016. p. 232-236.

-Toro-Román, V.; Siquier-Coll, J.; Bartolomé, I.; Grijota, F.J.; Muñoz D.; Maynar-Mariño, M. Copper concentration in erythrocytes, platelets, plasma, serum and urine: influence of physical training. J Int Soc Sports Nutr. Vol. 18. Num. 1. 2021. p. 28.

-Tureck, C.; Locateli, G.; Corrêa, V.G.; Koehnlein, E. A. Evaluation of the Brazilian population's intake of antioxidant nutrients and their relation with the nutritional status. Rev Bras Epidemiol. Vol. 20. Num. 1. 2017. p. 30-42.

-Turnlund, J.R.; Keyes, W.R.; Kim, S.K.; Domek, J.M. Long-term high copper intake: effects on copper absorption, retention, and homeostasis in men. Am J Clin Nutr. Vol. 81. Num. 4. 2005. p. 822-828.

-Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. Vol. 39. Num. 1. 2007. p. 44-84.

-Valko, M.; Morris, H.; Cronin, M. Metals, toxicity and oxidative stress. Curr Med Chem. Vol. 12. Num. 10. 2005. p. 1161-1208.

-Vitoux, D.; Arnaud, J.; Chappuis, P. Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology?. J Trace Elem Med Biol. Vol. 13. Num. 3. 1999. p. 113-28.

-Vitoux, D.; Arnaud, J.; Chappuis, P. Are copper, zinc and selenium in erythrocytes valuable biological indexes of nutrition and pathology?. J Trace Elem Med Biol. Vol. 13. Num. 3. 1999. p. 113-128.

-Whitehouse, R.C.; Prasad, A.S.; Rabbani, P.I.; Cossack, Z.T. Zinc in plasma, neutrophils, lymphocytes, and erythrocytes as determined by flameless atomic absorption spectrophotometry. Clin Chem. Vol. 28. Num. 3. 1982. p. 475-480.

-Willett, W.; Stampfer, M.J. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. Vol. 124. Num. 1. 1986. p. 17-27.

-WHO. World Health Organization. Obesity: preventing and managing the global epidemic e report of a WHO consultation. Geneva. WHO. 2000.

-Yang, H.; Liu, C.N.; Wolf, R.M.; Ralle, M.; Dev, M.S.; Pierson, H.; Askin, F.; Steele, K.E.; Magnuson, T.H.; Schweitzer, M.A. Obesity is associated with copper elevation in serum and tissues. Metallomics. Vol. 11. Num. 8. 2019. p. 1363-1371.

-Yang, H.; Ralle, M.; Wolfgang, M.J.; Dhawan, N.; Burkhead, J.L.; Rodriguez, S.; Kaplan, J.H.; Wong, G.W.; Haughey, N.; Lutsenko, S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol. Vol. 16. Num. 9. 2018. p. 2006519.

Publicado
2024-12-29
Como Citar
Sousa, T. G. V. de, Sousa, M. de P., Silva, N. C. da, Silva, L. D. da, Melo, S. R. de S., Soares, T. da C., Severo, J. S., Chaves, B. M. S., Oliveira, A. R. S. de, Cruz, K. J. C., Silva, M. T. B. da, Maia, C. S. C., & Marreiro, D. do N. (2024). Copper nutritional status and its relationships with oxidative stress in obese women. RBONE - Revista Brasileira De Obesidade, Nutrição E Emagrecimento, 18(116), 927-939. Recuperado de https://www.rbone.com.br/index.php/rbone/article/view/2506
Seção
Artigos Cientí­ficos - Original