Bioative compounds in the prevention and treatment of obesity

  • Jucianne Martins Lobato Programa de Pós-Graduação em Nutrição pela Universidade Federal de Pernambuco (PPGN-UFPE), Recife, Pernambuco, Brasil.
  • Francisco Douglas Dias Barros Secretaria Municipal de Saúde de Ipueiras (SMS), Ipueiras, Ceará, Brasil.
  • Diêgo de Oliveira Lima Programa de Pós-Graduação em Alimentos e Nutrição pela Universidade Federal do Piauí (PPGAN-UFPI), Teresina, Piauí, Brasil.
Keywords: Obesity, Antioxidants, Antiadipogenic, Foods

Abstract

Introduction: Obesity is characterized as a serious public health problem. In view of this, new strategies have been sought to assist in the prevention and treatment of this disease. Among these methods is the use of bioactive compounds, which are substances present in foods that favor and improve health. Objective: In this sense, the present study aimed to investigate bioactive compounds with potential anti-obesity activity. Materials and Methods: This is a systematic review of scientific articles published in the last three years, in Spanish and English in the Web of Science, Science Direct, Scorpus and Pubmed databases, where the articles were selected by reading the abstracts. Results: 41 articles of interest were selected that dealt with the potential of bioactive compounds with antiadipogenic effects. Discussion: Bioactive compounds are an excellent strategy in the prevention and treatment of obesity, as they comprise natural agents that can be obtained through food but can also be used in the future in the formulation of medicines, nutraceuticals and herbal medicines and thus contribute to the process of weight loss of obese patients. Conclusion: Therefore, functional foods and medicinal plants associated with weight loss should be explored in the prevention and treatment of obesity, however, the toxicity of isolated bioactive compounds should be investigated.

References

-Ahmed, B.; Liu, S.; Si, H. Antiadipogenic effects and mechanisms of combinations of genistein, epigallocatechin-3-gallate, and/or resveratrol in preadipocytes. Journal of Medicinal Food. Vol. 20. Num.2. 2017. p. 162-170.

-Albuquerque, L.P.; Cavalcante, A.C.M.; Almeida, P.C.; Carrapeiro, M.M. Relação da obesidade com o comportamento alimentar e o estilo de vida de escolares brasileiros. Nutritición clínica y dietética hospitalaria. Vol.36. Num. 1. 2016. p. 17-23.

-Balan, D.; Chan, K.L.; Murugan, D.; Abubakar, S.; Wong, P.F.Antiadipogenic effects of a standardized quassinoids-enriched fraction and eurycomanone from Eurycomalongifolia. Phytotherapy Research. Vol. 32. Num. 7. 2018. p. 1332-1345.

-Brasil. Ministério da Saúde; Agência Nacional de Vigilância Sanitária. Institui o Regulamento técnico de substâncias bioativas e probióticos isolados com alegação de propriedades funcional e ou de saúde, em âmbito nacional. Resolução da Diretoria Colegiada, Num. 2 de 2 de janeiro de 2002. Brasília. 2002.

-Brasil. Ministério da Saúde. Institui Política Nacional de Alimentação e Nutrição, em âmbito nacional. Portaria interministerial, Num. 2387 de 18 de outubro de 2012. Brasília. 2012.

-Carpéné, C.; Pejenaute, H.; Del Moral, R.; Boulet, N.; Hijona, E.;Andrade, F.; Villanueva-Millán, M.J.; Aguirre, L.; Arbones-Mainar, J.M.The dietary antioxidant Piceatannol inhibits adipogenesis of human adipose mesenchymal stem cells and limits glucose transportand lipogênica activities in adipocytes.International. Journal of Molecular Sciences. Vol.17. Num. 7. 2018. p. 1-14.

-Chang, C.L.; Kao, T.H. Antiobesity effect of brewer’syeast biomass in animal model. Journal of Functional Foods. Vol. 55. Num. 10. 2019. p. 255-262.

-Chang, S.; Cui, X.;Guo, M.; Tian, Y.; Xu, W.; Huang, K.; Zhang, Y. Insoluble dietary fiber from pear pomacecan prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. Journal of Microbiology Biotechnology. Vol. 27. Num. 4. 2017. p. 856-867.

-Cho, Y.L.; Park, J.G.; Kang, H.J.; Kim, W.; Cho, M.J.; Jang, J.H.; Kwon, M.G.; Kim, S.; Lee, S.H.; Lee, J.; Kim, Y.G.; Park, Y.J.; Kim, W.K.; Bae, K.H.; Kwon, B.M.; Chung, S.J.; Min, J.K. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγand C/EBPα regulation. Pharmacological Research. Vol. 139. Num. 5. 2019. p. 325-335.

-Dai, J.; Mumper, R.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. Vol. 15. Num. 10. 2010. p.7313-7352.

-Dias, P.C.; Henriques, P.; Anjos, L.A.; Burlandy, L. Obesidade e políticas públicas: concepções e estratégias adotadas pelo governo brasileiro. Cadernos de Saúde Pública. Vol. 33. Num. 7. 2017. p. 1-12.

-Freitas, S.; Silva, N.G.; Sousa, M.L.; Ribeiro, T.; Rosa, F.; Leão, P.N.; Vasconcelos, V.; Reis, M.A.; Urbatzka. Chlorophyll derivatives from Marine Cyanobacteria with lipid-reducing activities. Marine Drugs. Vol.17. Num. 4. 2019. p. 1-18.

-Hasan, M.M.; Ahmed, Q.U.; Soad, S.Z.M.; Latip, J.; Taher, M.; Syafiq, T.M.F.; Sarian, M.N.; Alhassan, A.M.; Zakaria, Z.A. Flavonoids from Tetracera indica Merr. Induce adipogenesis and exert glucose up take activities in 3T3-L1 adipocytecells. BMC Complementary and Alternative Medicine. Vol. 30. Num. 1. 2017. p. 1-14.

-Hwang, D.I.; Ganhou, K.J.; Kim, D.Y.; Kim, B.; Lee, H.M. Cinnamyl alcohol, the bioactive component of chestnut flower absolute, inhibits adipocyte differentiation in 3T3-L1 cells by down regulating adipogenic transcription factors. The American Journal of Chinese Medicine. Vol. 45. Num. 4. 2017. p. 833-846.

-Janini, J.P.; Bessler, D.; Vargas, A.B. Educação em saúde e promoção da saúde: Impacto na qualidade de vida do idoso. Saúde Debate. Vol. 39. Num. 105. 2015. p. 480-490.

-Jemil, I.; Abdelhedi, O.; Nasri, R.; Mora, L.; Marrekchi, R.; Jamoussi, K.; Nasri, M.Hypolipidemic, antiobesity and cardioprotective effects of fermented protein hydrolysates from sardinelle (Sardinellaaurita) in high-fat and fructose diet fed Wistarrat. Life Sciences. Vol. 176. Num. 1. 2017. p. 54-66.

-Kowalska, K.; Olejnik, A.; Szwajgier, D.; Olkowicz, M. Inhibitory activity of chokeberry, bilberry, raspberry and cranberry polyphenol-rich extract towards adipogenesis and oxidative stress in differentiated 3T3-L1 adipose cells.PLOSOne. Vol. 28. Num. 11. 2017. p. 1-15.

-Lee, S.R.; Choi, E.;Jeon, S.H.; Zhi, X.Y.; Yu, J.S.; Kim, S.H.; Lee, J.; Park, K.M.; Kim, K.M. Tirucallane triterpenoids from the stems and stem bark of Cornus walteri that control adipocyte and osteoblast differentiations. Molecules. Vol. 23. Num. 11. 2018. p. 1-13.

-Ling, W.; Li, S.; Zhang, X.; Xu, Y.; Gao, Y.; Du, Q.; Wang, G.; Ventilador, W.; Sol, K.; Bian, J. Evaluation of anti-obesity activity, acute toxicity, and subacute toxicity of probiotic darktea. Biomolecules. Vol. 8. Num. 4. 2018. p. 99-107.

-Liu, Z.; Qiao, Q.; Sun, Y.; Chen, Y.; Ren, B.; Liu, X. Sesamol ameliorates diet-induced obesity in C57BL/6J mice and suppresses adipogenesis in 3T3-L1 cells via regulating mitochondria-lipid metabolism. Molecular Nutrition & Food Research. Vol. 61. Num. 8. 2017. p. 160-167.

-Ma, Q.; Cui, Y.;Xu, S.; Zhao, Y.; Yuan, H.; Pião, G. Synergistic inhibitory effects of acacetin and 11 other flavonoids isolated from Artemisia sacrorumon lipid accumulation in 3T3-L1 cells. Journal of Agricultural and Food Chemistry. Vol. 12. Num. 49. 2018. p.12931-12940.

-Mazza, G.; Girard, B. Functional grape and citrus products. In: Functional foods biochemical and processing aspects. Lancaster: Technomic publishing co. Vol. 5. Num. 1. 1998. p. 139-159.

-Miyashita, K.; Hosokawa, M. Carotenoids as a nutraceutical therapy for visceral obesity. Nutrition in the Prevention and Treatment of Abdominal Obesity. United States: Academic Press. Vol. 2. Num. 32. 2019. p. 459-477.

-Moura, M.H.C.; Cunha, M.G.; Alezandro, M.R.; Genovese, M.I. Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat-sucrose diet-induced obesity in C57BL/6 mice. Food Research International. Vol. 107. Num. 7. 2018. p. 48-60.

-Nam, M.; Choi, M.S.; Choi, J.Y.; Kim, N.; Kim, M.S.; Jung, S.; Kim, J.;Ryu, D.H.; Hwang, G.S. Effect of green tea on hepatic lipid metabolism in mice fed a high-fat diet. The Journal of Nutritional Biochemistry. Vol. 51. Num. 9. 2018. p. 1-7.

-Naik, R.; Nemani, H.; Pothani, S.; Pothana, S.; Satyavani, M.; Qadri, S.S.; Srinivas, M.; Parim, B.Obesity-alleviating capabilities of Acalypha indica, Pergulari ademia and Tinospora cardifolia leaves methanolic extracts in WNIN/GR-obrats. Journal of Nutrition and Intermediary Metabolism. Vol. 16. Num. 2. 2019. p. 90-100.

-Nerurkar, P.V.; Orias, D.; Soares, N.; Kumar, M.; Nerurkar, V.R. Momordica charantia (bittermelon) modulates adipose tissue inflammasome gene expression and adipose-gutin flammatory cross talk in high-fat diet (HFD)-fed mice. The Journal of Nutritional Biochemistry. Vol. 68. Num. 5. 2019. p. 16-32.

-Okouchi, R.E.S.; Yamamoto, K.; Ota, T.; Seki, K.; Imai, M.; Ota, R.; Asayama, Y.; Nakashima, A.; Suzuki, K.; Tsuduki, T. Simultaneous intake of Euglena gracilis and vegetables exerts synergistic anti-obesity and anti-inflammatory effects by modulating the gut microbiota in diet-induced obese Mice. Nutrients. Vol. 21. Num. 1. 2019. p.204-211.

-Park, E.; Kim, J.; Yeo, S.; Kim, G.; Ko, E.H.; Lee, S.W.; Li, W.Y.; Choi, C.W.; Jeong, S.Y. Antiadipogenic effects of loganic acid in 3T3-L1 preadipocytes and ovariectomized mice. Molecules. Vol.23. Num. 7. 2018. p. 1-11.

-Popkin, B.M.; Adair, L.S.; Wen, S.N.G. Global nutrition transition and the pandemic of obesity in developing countries. Nutrition Reviews. Vol. 70. Num. 1. 2018. p. 3-21.

-Pimentel, C.V.M.B.; Francki, V.M.; Gollücke, A.P.B. Alimentos funcionais: Introdução às principais substâncias bioativas em alimentos. São Paulo. Varela. 2005. p. 50.

-Pieniz, S.; Colpo, E.; Oliveira, V.R.; Estefanel, V.; Andreazza, R. Avaliação in vitro do potencial antioxidante de frutas e hortaliças. Ciência e Agrotecnologia. Vol. 33. Num. 2. 2009. p. 552-559.

-Rech, D.C.; Borfe, L.; Emmanouilidis, A.; Garcia, E.L.; Krug, S.B.F. As políticas públicas e o enfrentamento da obesidade no Brasil: uma revisão reflexiva. Revista de Epidemiologia e Controle de infecção. Vol. 6. Num. 1. 2016. p. 1-10.

-Sarma, S.M.; Khare, P.; Jagtap, S.; Singh, D.P.; Baboota, R.K.; Podili, K.; Bkai, R.K.; Kaur, J.; Butão, K.K.; Bishnoi, M.; Kondepudi, K.K. Kodo Millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food & Function. Vol. 22. Num. 3. 2017. p. 1174-1183.

-Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; Ele, X. Anti‐obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Science &Nutrition. Vol.7. Num. 4. 2019. p. 1295-1301.

-Thatiparth, J.; Dodoala, S.; Koganti, B.; Prasad, K.V.S.R.G. Barley grass juice (Hordeum vulgare L.) inhibits obesity and improves lipid profile in high fat diet-induced rat model. Journal of Ethnopharmacology. Vol. 28. Num. 7. 2019. p. 118-127.

-Thomas, S.S.; Kim, H.; Lee, S.J.; Cha, Y.S. Antiobesity effects of purple Perilla (Perilla frutescens var.Acuta) on adipocyte differentiation and mice fed a high-fat diet. Journal of Food Science. Vol. 83. Num. 9. 2018. p.2384-2393.

-Trindade, P.L.; Soares, E.R.; Monteiro, E.B.; Resende, A.C.; Moura-Neves, N.; Souza-Mello, V.; Ferraz, D.C.; Daleprane, J.B.Antiadipogenic effects of açaí seed extracton high fat diet-fed mice and 3T3-L1 adipocytes: A potential mechanism faction. Life Sciences. Vol. 228. Num. 4. 2019. p. 316-322.

-Tung, Y.T.; Lyu, K.N.; Chun, Y.C.; Chien, Y.W. Supplementation comprising dietary fish oil withall-trans retinoic acid decreased blood lipids and fat accumulation in C57BL/6J mice. Journal of Functional Foods. Vol. 52. Num. 1. 2019. p. 310-315.

-Unno, Y.; Yamamoto, H.; Takatsuki, S.; Sato, Y.; Kuranaga, T.; Yaza, K. Ono, Y.; Wakimoto, T. Palmitoyl lactic acid induces adipogenesis and a brown fat−like phenotype in 3T3 L1 preadipocytes. Biochimica et Biophysica Acta: Molecular and Cell Biology of Lipids. Vol. 7. Num. 7. 2018. p 772-782.

-Van Harmelen, V.; Skurk, T.; Rohring, K. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. International Journal of Obesity and Related Mebolic. Disorders. Vol. 27. Num. 8. 2003. p. 889-895.

-Wang, L.C.; Pan, T.M.; Tsai, T.Y. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. Journal of Food and Drug Analysis. Vol. 26. Num. 3. 2018. p. 973-984.

-Wang, Z.; Kim, J.H.; Jang. Y.S.; Kim, C.H.; Lee, J.Y.; Lim, S.S. Anti−obesity effect of Solidago virgaurea var. gigantean extract through regulation of adipogenesis and lipogenesis pathways in high-fat diet-induced obese mice (C57BL/6N). Food &Nutrition Research. Vol. 13. Num. 1. 2017. p. 1273-1278.

-Wannmacher, L. Obesidade como fator de risco para morbidade e mortalidade: Evidências sobre o manejo com medidas não medicamentosas. Assistência Farmacêutica. Vol. 1. Num. 1. 2016. p. 1-10.

-Yang, H.; Choi, M.; Lee, D.Y.; Sung, S.H. Anti-differentation effect of B, D−seco limonoids of Swietenia mahogani. Pharmacognosy magazine. Vol. 13. Num. 50. 2017. p. 293-299.

-Yang, J.H.; Choi, M.H.; Yang, S.H.; Cho, S.S.; Park, S.J.; Shin, H.J.; Ki, S.H. Potent anti−inflammatory and antiadipogenic properties of Bamboo (Sasa coreana Nakai) leaves extract and its major constituent flavonoids. Journal of Agricultural and Food Chemistry. Vol. 65. Num. 31. 2017. p. 6665-6673.

-Yin, J.; Chang−Seob, S.; Hwang, E.H.; Lee, M.G.; Song, K.H. Anti-obesity activities of chikusetsusaponin IV and Dolichos lablab L. seeds. Nutrients. Vol. 10. Num. 9. 2018. p. 1221-1228.

Published
2023-01-30
How to Cite
Lobato, J. M., Barros, F. D. D., & Lima, D. de O. (2023). Bioative compounds in the prevention and treatment of obesity. Brazilian Journal of Obesity, Nutrition and Weight Loss, 16(104), 886-895. Retrieved from https://www.rbone.com.br/index.php/rbone/article/view/2147
Section
Scientific Articles - Original