Hyperlipid experimental diets and bioactive compounds with hypolipemic effect
Abstract
Introduction: Experimental high-fat diets are useful models for assessing the physiological impacts of high-fat diets on humans, as well as, for assessing the impacts of bioactive compounds on these conditions. Thus, the objective of this study is to identify the models of experimental high-fat diets presented by the literature and to verify the bioactive compounds used to attenuate the effects promoted by these diets. Materials and Methods: A literature review was carried out, using the databases "Google academic", "Pubmed", "Scielo" and "Cochrane". The keywords used in the search were “High fat diet” and “Hyperlipidic diet”. Results: The results showed that the high-fat diet models showed an important variation in relation to the levels of lipids used, as well as in relation to the lipid components used. There was also great variability in relation to the bioactive compounds tested to mitigate the effects of these diets, these compounds being obtained from fruits, spices, mushrooms and a wide variety of plants. Conclusion: Therefore, the models of experimental high-fat diets do not present standardization, which makes it difficult to interpret and compare different results.
References
-Aladaileh, S. H.; Saghir, S.; Murugesu, K.; Sadikun, A.; Ahmad, A.; Kaur, G.; Mahmoud, A. M.; Murugaiyah, V. Antihyperlipidemic and Antioxidant Effects of Averrhoa Carambola Extract in High-Fat Diet-Fed Rats. Biomedicines. Vol. 7. Num. 3. 2019. p. 72.
-Alrefaie, Z.; Moustafa I. Vitamin D3 favorable outcome on recognition memory and prefrontal cortex expression of choline acetyltransferase and acetylcholinesterase in experimental model of chronic high-fat feeding. The International journal of neuroscience. Vol. 130. Num. 3. 2020. p. 262-269.
-Carmo, H.; Souza, F.; Soares, A.; Munhoz, J.; Santos, F.; de Siqueira, N. G.; Silva, R. Dietary supplementation with Camu-Camu versus sleeve gastrectomy in Wistar rats weight control. Revista do Colégio Brasileiro de Cirurgiões Vol. 46. Num. 4. 2019. p. e2238.
-Chang, X. X.; Yan, H. M.; Xu, Q.; Xia, M. F.; Bian, H.; Zhu, T. F.; Gao, X. The effects of berberine on hyperhomocysteinemia and hyperlipidemia in rats fed with a long-term high-fat diet. Lipids in health and disease. Vol. 11. Num. 86. 2012.
-Del Olmo, N.; Blanco-Gandía, M. C.; Mateos-García, A.; Del Rio, D.; Miñarro, J.; Ruiz-Gayo, M.; Rodríguez-Arias, M. Differential Impact of Ad Libitum or Intermittent High-Fat Diets on Bingeing Ethanol-Mediated Behaviors. Nutrients Vol. 11. Num. 9. 2019. p. 2253.
-Dhulasavant, V.; Pawar, M.; Shinde, S.; Naikwade, N. S. Antihyperlipidemic activity of Cinnamomum tamala Nees. on high cholesterol diet induced Hyperlipidemia. International Journal of PharmTech Research. Vol. Num. 4. 2010. p. 2517-2521.
-Dischinger, U.; Corteville, C.; Otto, C.; Fassnacht, M.; Seyfried, F.; Hankir, M. K. GLP-1 and PYY3-36 reduce high-fat food preference additively after Roux-en-Y gastric bypass in diet-induced obese rats. Surgery for obesity and related diseases. Journal of the American Society for Bariatric Surgery. Vol. 15. Num. 9. 2019. p. 1483-1492.
-Fan, S.; Zhang, Y.; Sun, Q.; Yu, L.; Li, M.; Zheng, B.; Wu, X.; Yang, B.; Li, Y.; Huang, C. Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice. The Journal of nutritional biochemistry. Vol. 25. Num. 7. 2014. p. 702-709.
-Feng, L.; Yu, C.; Ying, K.; Hua, J.; Dai, X. Hypolipidemic and antioxidant effects of total fl avonoids of Perilla Frutescens leaves in hyperlipidemia rats induced by high-fat diet. Food Research International. Vol. 44. Núm. 1. 2011. p. 404-409.
-Fuchs, T.; Loureiro, M. de P.; Macedo, L. E.; Nocca, D.; Nedelcu, M.; Costa-Casagrande, T. A. Modelos animais na síndrome metabólica. Revista do Colégio Brasileiro de Cirurgiões. Vol. 45. Num. 5. 2018.
-Gao, H.; Long, Y.; Jiang, X.; Liu, Z.; Wang, D.; Zhao, Y.; Li, D.; Sun, B. Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Experimental Gerontology. Vol. 48. Num. 6. 2013. p. 572-578.
-Gonçalves, L. K.; Silva, I.; Cechinel, L. R.; Frusciante, M. R.; Mello, A. S.; Elsner, V. R.; Funchal, C.; Dani, C. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study. Neuroscience letters. Vol. 661. 2017. p. 29-32.
-Guo, F.; Huang, C.; Liao, X.; Wang, Y.; He, Y.; Feng, R.; Li, Y.; Sun, C. Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Molecular nutrition & food research. Vol. 55. Num. 12. 2011. p. 1809-1818.
-Guo, P.; Kai, Q.; Gao, J.; Lian, Z. Q.; Wu, C. M.; Wu, C. A.; Zhu, H. B. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences. Vol. 113. Num. 4. 2010. p. 395-403.
-Hanna Kazazian, N.; Wang, Y.; Roussel-Queval, A.; Marcadet, L.; Chasson, L.; Laprie, C.; Desnues, B.; Charaix, J.; Irla, M.; Alexopoulou, L. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Frontiers in immunology. Vol. 10. 2019.
-Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutrition research reviews. Vol. 23. Num. 2. 2010. p. 270-299.
-Hiwatashi, K.; Kosaka, Y.; Suzuki, N.; Hata, K.; Mukaiyama, T.; Sakamoto, K.; Shirakawa, H.; Komai, M. Yamabushitake mushroom (Hericium erinaceus) improved lipid metabolism in mice fed a high-fat diet. Bioscience, biotechnology, and biochemistry. Vol. 74. Num. 7. 2010. p. 1447-1451.
-Huang, Y. C.; Ning, H.; Shindel, A. W.; Fandel, T. M.; Lin, G.; Harraz, A. M.; Lue, T. F.; Lin, C. S. The effect of intracavernous injection of adipose tissue-derived stem cells on hyperlipidemia-associated erectile dysfunction in a rat model. The journal of sexual medicine. Vol. 7. Num. 4. 2010. p. 1391-1400.
-Ibrahim, H. A.; Zhu, Y.; Wu, C.; Lu, C.; Ezekwe, M. O.; Liao, S. F.; Huang, K. Selenium-enriched probiotics improves murine male fertility compromised by high fat diet. Biological trace element research. Vol. 147. Num. 1-3. 2012. p. 251-260.
-Ioannidis J. P. Extrapolating from animals to humans. Science translational medicine. Vol. 4. Num. 151. 2012. p. 151ps15.
-Jain, P. G.; Patil, S. D.; Haswani, N. G.; Girase, M. V.; Surana, S. J. Hypolipidemic activity of Moringa oleifera Lam.; Moringaceae, on high fat diet induced hyperlipidemia in albino rats. Revista Brasileira de Farmacognosia. Vol. 20. Num. 6. 2010. p. 969-973.
-Ji, G.; Zhao, X.; Leng, L.; Liu, P.; Jiang, Z. Comparison of dietary control and atorvastatin on high fat diet induced hepatic steatosis and hyperlipidemia in rats. Lipids in health and disease. Vol. 10. Num. 23. 2011.
-Jin, D.; Xu, Y.; Mei, X.; Meng, Q.; Gao, Y.; Li, B.; Tu, Y. Antiobesity and lipid lowering effects of theaflavins on high-fat diet induced obese rats. Journal of Functional Foods. Vol. 5. Num. 3. 2013. p. 1142-1150.
-Jo, S. P.; Kim, J. K.; Lim, Y. H. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food and chemical toxicology. Vol. 65. 2014. p.213-218.
-Kim, E. H.; Bae, J. S.; Hahm, K. B.; Cha, J. Y. Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Biochemical pharmacology. Vol. 84. Num. 10. 2012. p. 1359-1365.
-Kim, H. J.; Lee, M. J.; Jang, J. Y.; Lee, S. H. Allium hookeri Root Extract Inhibits Adipogenesis by Promoting Lipolysis in High Fat Diet-Induced Obese Mice. Nutrients. Vol. 11. Num. 10. 2019b. p. 2262.
-Kim, I.; Kim, J.; Hwang, Y. Hwang, K.; Om, A.; Kim, J.; Cho, K. The beneficial effects of aged black garlic extract on obesity and hyperlipidemia in rats fed a high-fat diet. Journal of Medicinal Plants Research. Vol. 5. Núm. 14. 2011, p. 3159-3168.
-Kim, J.; Lee, H.; An, J.; Song, Y.; Lee, C. K.; Kim, K.; Kong, H. Alterations in Gut Microbiota by Statin Therapy and Possible Intermediate Effects on Hyperglycemia and Hyperlipidemia. Frontiers in microbiology. Vol. 10. Num. 1947. 2019a.
-Kobayashi, Y.; Miyazawa, M.; Kamei, A.; Abe, K.; Kojima, T. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Bioscience, biotechnology, and biochemistry. Vol. 74. Num. 12. 2010. p. 2385-2395.
-Kooti, W.; Ghasemiboroon, M, Asadi-Samani, M.; Ahangarpoor, A.; Abadi, M. N. A, Afrisham, R, Dashti, N. The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet. Advances in Environmental Biology. Vol. 8. Num. 9. 2014. P. 325-330
-Lee, Y. J.; Choi, D. H.; Kim, E. J.; Kim, H. Y.; Kwon, T. O.; Kang, D. G.; Lee, H. S. Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. The American journal of Chinese medicine. Vol. 39. Num. 1. 2011. p. 39-52.
-Li, N.; Chen, Z.; Mao, X.; Yu, J.; Zhao, R. Effects of lipid regulation using raw and processed radix polygoni multiflori in rats fed a high-fat diet. Evidence-based complementary and alternative medicine eCAM, 2012. 329171.
-Li, Q.; Liu, Z.; Huang, J.; Luo, G.; Liang, Q.; Wang, D.; Ye, X.; Wu, C.; Wang, L.; Hu, J. Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. Journal of the science of food and agriculture. Vol. 93. Num. 6. 2013a. p. 1310-1316.
-Li, S.; He, N.; Wang, L. Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Marine drugs. Vol. 17. Num. 9. 2019. p. 540.
-Li, T.; Li, S.; Du, L.; Wang, N.; Guo, M.; Zhang, J.; Yan, F.; Zhang, H. Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chemistry. Vol. 121. Num. 4. 2010a. p. 1010-1013.
-Li, W.; Wang, D.; Song, G.; Zuo, C.; Qiao, X.; Qin, S. The effect of combination therapy of allicin and fenofibrate on high fat diet-induced vascular endothelium dysfunction and liver damage in rats. Lipids in health and disease. Vol. 9. 2010b. p. 131.
-Li, Y.; Chen, X.; Xue, J.; Liu, J.; Chen, X.; Wulasihan, M. Flavonoids furom Coreopsis tinctoria adjust lipid metabolism in hyperlipidemia animals by down-regulating adipose differentiation-related protein. Lipids in health and disease. Vol. 13. Num. 193. 2013b.
-Liao, C.C.; Ou, T.T.; Wu, C.H.; Wang, C.J. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. Journal of agricultural and food chemistry. Vol. 61. Num. 46. 2013. p. 11082-11088.
-Lima, V. M.; Lino, C. A.; Senger, N.; de Oliveira Silva, T.; Fonseca, R.; Bader, M.; Santos, R.; Júnior, J. D.; Barreto-Chaves, M.; Diniz, G. P. Angiotensin II type 2 receptor mediates high fat diet-induced cardiomyocyte hypertrophy and hypercholesterolemia. Molecular and cellular endocrinology. Vol. 498. 2019. p. 110576.
-Ma, Y.; Wang, W.; Zhang, J.; Lu, Y.; Wu, W.; Yan, H.; Wang, Y. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PloS one. Vol. 7. Num. 4. 2012. p. e35835.
-Magalhães, A. J. B.; Castoldi, R. C.; Camargo, R. C. T.; Ozaki, G. A. T.; Costalonga, R. R.; Moreira, R. J.; Camargo Filho, J. C. S. Can the Intermittent Training Generate Alterations on the Liver Tissue of Rats Submitted to a Hyperlipidic Diet? International Journal of Morphology. Vol. 34. Num. 1. 2016. p. 90-96.
-Malik, M.; Zaffar, S.; Fatimah, M.; Chiragh, S.; Malik, S.; Rehan, A. M. Effect of Three Pakistani Date-Seed Varieties on Lipid Profile of Diet Induced Hyperlipidemic Rabbits. Journal of Ayub Medical College. Vol. 31. Num. 3. 2019. p. 326-330.
-Miao, H.; Chen, H.; Pei, S.; Bai, X.; Vaziri, N. D.; Zhao, Y. Y. Plasma lipidomics reveal profound perturbation of glycerophospholipids, fatty acids, and sphingolipids in diet-induced hyperlipidemia. Chemico biological interactions. Vol. 228. 2015. p. 79-87.
-Miao, H.; Zhao, Y. H.; Vaziri, N. D.; Tang, D. D.; Chen, H.; Chen, H.; Khazaeli, M.; Tarbiat-Boldaji, M.; Hatami, L.; Zhao, Y. Y. Lipidomics Biomarkers of Diet-Induced Hyperlipidemia and Its Treatment with Poria cocos. Journal of agricultural and food chemistry. Vol. 64. Num. 4. 2019. p. 969-979.
-Mong, M. C.; Chao, C. Y.; Yin, M. C. Histidine and carnosine alleviated hepatic steatosis in mice consumed high saturated fat diet. European Journal of Pharmacology. Vol. 653. Num. 1-3. 2011. p. 82-88.
-Munshi, R. P.; Joshi, S. G.; Rane, B. N. Development of an experimental diet model in rats to study hyperlipidemia and insulin resistance, markers for coronary heart disease. Indian Journal of Pharmacology. Vol. 46. Num. 3. 2014. p. 270-276.
-Niu, C.; Chen, C.; Chen, L.; Cheng, K.; Yeh, C.; Cheng, J. Decrease of blood lipids induced by Shan-Zha (fruit of Crataegus pinnatifida) is mainly related to an increase of PPARα in liver of mice fed high-fat diet. Hormone and metabolic research. Vol. 43. Num. 9. 2011. p. 625-630.
-Nogueira, R. A.; Pessoa, D. T.; da Silva, E.; Costa, E. Can a hypercholesterolemic diet change the basal brain electrical activity and during status epilepticus in rats?. Metabolic brain disease. Vol. 34. Num. 1. 2019. p. 71-77.
-Pilling, D.; Cox, N.; Thomson, M. A.; Karhadkar, T. R.; Gomer, R. H. Serum Amyloid P and a Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin Ligand Inhibit High-Fat Diet-Induced Adipose Tissue and Liver Inflammation and Steatosis in Mice. The American journal of pathology. Vol. 189. Num. 12. 2019. p. 2400-2413.
-Prangthip, P.; Surasiang, R.; Charoensiri, R.; Leardkamolkarn, V.; Komindr, S.; Yamborisut, U.; Kongkachuichai, R. Amelioration of hyperglycemia, hyperlipidemia, oxidative stress and inflammation in steptozotocin-induced diabetic rats fed a high fat diet by riceberry supplement. Journal of Functional Foods. Vol. 5. Num. 1. 2013. p. 195-203.
-Rangel-Huerta, O. D.; Gil, A. Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. International journal of molecular sciences. Vol. 17. Num. 12. 2016. p. 2072.
-Roepke, T. A.; Yasrebi, A.; Villalobos, A.; Krumm, E. A.; Yang, J. A.; Mamounis, K. J. The loss of ERE-dependent ERα signaling potentiates the effects of maternal high-fat diet on energy homeostasis in female offspring fed an obesogenic diet. Journal of developmental origins of health and disease. Vol. 11. Num. 3. 2020. p. 285-296.
-Rosini, T. C.; Silva, A. S.; Moraes, C. Diet-induced obesity: rodent model for the study of obesity-related disorders. Revista da Associação Medica Brasileira Vol. 58. Num. 3. 2012. p. 383-387.
-Saghir, M. R.; Sadiq, S.; Nayak, S.; Tahir, M. U. Hypolipidemic effect of aqueous extract of Carum carvi (black Zeera) seeds in diet induced hyperlipidemic rats. Pakistan journal of pharmaceutical sciences. Vol. 25. Num. 2. 2012. p. 333-337.
-Santos, C.; Diniz, V.; Bachi, A.; Santos de Oliveira, L. C.; Ghazal, T.; Passos, M.; de Oliveira, H. H.; Murata, G.; Masi, L. N.; Martins, A. R.; Levada-Pires, A. C.; Curi, R.; Hirabara, S. M.; Sellitti, D. F.; Pithon-Curi, T. C.; Gorjão, R. Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet. Nutrition & metabolism. Vol. 16. Num. 63. 2019.
-Sha, S.; Liu, X.; Zhao, R.; Qing, L.; He, Q.; Sun, L.; Chen, L. Effects of glucagon-like peptide-1 analog liraglutide on the systemic inflammation in high-fat-diet-induced mice. Endocrine. Vol. 66. Num. 3. 2019. p.494-502.
-Sheng, D.; Zhao, S.; Gao, L.; Zheng, H.; Liu, W.; Hou, J.; Jin, Y.; Ye, F.; Zhao, Q.; Li, R.; Zhao, N.; Zhang, L.; Han, Z.; Wei, L. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell & bioscience. Vol. 9. 2019. p. 77.
-Shih, C. C.; Lin, C. H.; Wu, J. B. Eriobotrya japonica improves hyperlipidemia and reverses insulin resistance in high-fat-fed mice. Phytotherapy research. Vol. 24. Num. 12. 2010. p. 1769-1780.
-Sim, M. O.; Ham, J. R.; Lee, H. I.; Seo, K. I.; Lee, M. K. Long-term supplementation of umbelliferone and 4-methylumbelliferone alleviates high-fat diet induced hypertriglyceridemia and hyperglycemia in mice. Chemico-biological interactions. Vol. 216. 2014. p. 9-16.
-Song, X.; Wang, J.; Wang, P.; Tian, N.; Yang, M.; Kong, L. ¹H NMR-based metabolomics approach to evaluate the effect of Xue-Fu-Zhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. Journal of pharmaceutical and biomedical analysis. Vol. 78-79. 2013. p. 202-210.
-Sowmya, A.; Ananthi, T. Hypolipidemic activity of Mimosa pudica Linn on Butter Induced Hyperlipidemia in Rats. Asian Journal of Research in Pharmaceutical Science. Vol. 1. Núm. 4. 2011. p. 123-126.
-Suanarunsawat, T.; Boonnak, T.; Na Ayutthaya, W. D.; Thirawarapan, S. Anti-hyperlipidemic and cardioprotective effects of Ocimum sanctum L. fixed oil in rats fed a high fat diet. Journal of basic and clinical physiology and pharmacology. Vol. 21. Num. 4. 2010. p. 387-400.
-Suruga, K.; Tomita, T.; Kadokura, K.; Arai, T. Rhus verniciflua leaf extract suppresses obesity in high-fat diet-induced obese mice. Food & nutrition research. Vol. 63. 2019.
-Uecker, J. N.; Schneider, J. P.; Cerqueira, J. H.; Rincón, J. A. A.; Campos, F. T.; Schneider, A.; Barros, C. C.; Andreazza, R.; Jaskulski, I. B.; Pieniz, S. Ilex paraguariensis extract prevents body weight gain in rats fed a high-fat diet. Food Science and Technology. Vol. 39. Num. 3. 2019. p. 620-626.
-Ulla, A.; Alam, M. A.; Sikder, B.; Sumi, F. A.; Rahman, M. M.; Habib, Z. F.; Mohammed, M. K.; Subhan, N.; Hossain, H.; Reza, H. M. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. BMC complementary and alternative medicine. Vol. 17. Num. 1. 2017. p. 289.
-Wang, J. P.; Cui, R. Y.; Ding, X. M.; Bai, S. P.; Zeng, Q. F.; Peng, H. W.; Zhang, K. Y. Vanadium in high-fat diets sourced from egg yolk decreases growth and antioxidative status of Wistar rats. Animal nutrition. Vol. 5. Num. 3. 2019. p. 307-313.
-Wang, J.; Cao, Y.; Wang, C.; Sun, B. Wheat bran xylooligosaccharides improve blood lipid metabolism and antioxidant status in rats fed a high-fat diet. Carbohydrate Polymers. Vol. 86. Num. 3. 2011. p. 1192-1197.
-WHO. Noncommunicable Diseases Country Profiles 2018.
-Xia, W.; Sun, C.; Zhao, Y.; Wu, L. Hypolipidemic and antioxidant activities of sanchi (radix notoginseng) in rats fed with a high fat diet. Phytomedicine: international journal of phytotherapy and phytopharmacology. Vol. 18. Num. 6. 2011. p. 516-520.
-Xu, H.; Zhao, C.; Li, Y.; Liu, R.; Ao, M.; Li, F.; Yao, Y.; Tao, Z.; Yu, L. The ameliorative effect of the Pyracantha fortuneana (Maxim.) H. L. Li extract on intestinal barrier dysfunction through modulating glycolipid digestion and gut microbiota in high fat diet-fed rats. Food & function. Vol. 10. Num. 10. 2019. p. 6517-6532.
-Ying, H. Z.; Liu, Y. H.; Yu, B.; Wang, Z. Y.; Zang, J. N.; Yu, C. H. Dietary quercetin ameliorates nonalcoholic steatohepatitis induced by a high-fat diet in gerbils. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. Vol. 52. 2013. p. 53-60.
-Zhang, H. L.; Tao, Y.; Guo, J.; Hu, Y. M.; Su, Z. Q. Hypolipidemic effects of chitosan nanoparticles in hyperlipidemia rats induced by high fat diet. International immunopharmacology. Vol. 11. Num. 4. 2011. p. 457-461.
-Zhang, Q.; Wang, G. J.; A, J. Y.; Wu, D.; Zhu, L. L.; Ma, B.; Du, Y. Application of GC/MS-based metabonomic profiling in studying the lipid-regulating effects of Ginkgo biloba extract on diet-induced hyperlipidemia in rats. Acta pharmacologica Sinica. Vol. 30. Num. 12. 2009. p. 1674-1687.
-Zhao, X.; Zhu, J.; Wang, L.; Li, Y.; Zhao, T.; Chen, X.; Sun, Y.; Dai, Y.; Wei, G.; Altamirano, A.; Zhang, T.; Yan, Z. U. Diffracta extract mitigates high fat diet and VD3-induced atherosclerosis and biochemical changes in the serum liver and aorta of rats. Biomedicine & pharmacotherapy. Vol. 120. 2019. p. 109446.
Copyright (c) 2024 Bruna Camargo Walter, Sóstenez Alexandre Vessaro da Silva , Daniela Miotto Bernardi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).