Diabetes mellitus tipo 3 y ejercicio físico: relaciones entre obesidad, resistencia a la insulina y trastornos cognitivos

  • Letí­cia Andrade Cerrone Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Cauê Vazquez La Scala Teixeira Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Faculdade de Educação Fí­sica, Faculdade Praia Grande, Praia Grande-SP, Brasil.
  • Renata Astride Rebelo Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Danielle Arisa Caranti Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Departamento de Biociências, Universidade Federal de São Paulo, Santos-SP, Brasil.
  • Ricardo José Gomes Grupo de Estudos da Obesidade, Laboratório Interdisciplinar de Doenças Metabólicas, Universidade Federal de São Paulo, Santos-SP, Brasil. Departamento de Biociências, Universidade Federal de São Paulo, Santos-SP, Brasil.
Palabras clave: Enfermedad de Alzheimer, Cognición, Obesidad, Diabetes mellitus, Ejercicio

Resumen

Introducción y objetivo: La Diabetes Mellitus tipo 3 (DM3) es un término recientemente propuesto para referirse a la relación entre obesidad, resistencia a la insulina, diabetes mellitus tipo 2 y trastornos cognitivos. El estudio presenta evidencias sobre la DM3, y muestra el papel del ejercicio físico como tratamiento no farmacológico de la DM3. Materiales y Métodos: Se realizó una revisión de artículos publicados entre 2000 y 2016 en las bases de datos MEDLINE y LILACS. Todos los pasos del proceso de revisión fueron realizados por dos investigadores independientes. Resultados y discusión: Se verificó la relación entre los trastornos neurológicos y cognitivos y las alteraciones cardiometabólicas; resistencia a la insulina y el proceso inflamatorio presente en la obesidad. El ejercicio físico (EF) tuvo efectos beneficiosos sobre varios factores de riesgo para DM3. El término DM3 enfatiza la influencia de condiciones como la obesidad, la resistencia a la insulina y la diabetes mellitus tipo 2 en el desarrollo de la enfermedad de Alzheimer. Conclusión: la EP demostró ser una importante estrategia de prevención/tratamiento de la DM3. Son necesarios más estudios sobre las modalidades de PE con el fin de consolidar el conocimiento para la elaboración de guías de prescripción de PE en el contexto de la DM3.

Citas

-Baldi, J.C.; Wilson, G.A.; Wilson, L.C.; Wilkins, G.T.; Lamberts, R.R. The Type 2 Diabetic heart: its role in exercise intolerance and the challenge to find effective exercise interventions. Sports Medicine. Vol. 46. Num. 11. 2016. p. 1605-1617.

-Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the brain: there and back again. Pharmacological Therapy. Vol. 136. Num. 1. 2012. p. 82-93.

-Barnes, J.N. Exercise, cognitive function, and aging. Advances in Physiology Education. Vol. 39. Num. 2. 2015. p. 55-62.

-Besser,L.M.; Gill, D.P.; Monsell, S.E.; Brenowitz, W.; Meranus, D.H.; Kukull, W.; Gustafson, D.R. Body mass index, weight change, and clinical progression in mild cognitive impairment and Alzheimerdisease. Alzheimer Disiase & Associated Disorders. Vol. 28. Num. 1. 2014. p. 36-43.

-Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: a systematic review. The Lancet Neurology. Vol. 5. Num. 1. 2006. p. 64-74.

-Blaž, K.M.; Švab, I. A multidisciplinary approach to treating obesity in a community health centre. Zdravstveno Varstvo. Vol. 54. Num. 4. 2015. p. 252-258.

-Bove, R.M.; Gerweck, A.V.; Mancuso, S.M.; Bredella, M.A.; Sherman, J.C.; Miller, K.K. Association between adiposity and cognitive function in young men: Hormonal mechanisms. Obesity (Silver Spring). Vol. 24. Num. 4. 2016. p. 954-961.

-Cassilhas, R.C.; Lee, K.S.; Fernandes, J.; Oliveira, M.G.M.; Tufik, S.; Meeusen, R.; de Mello, M.T. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. Vol. 202. 2012. p. 309-317.

-Chen, W.W.; Zhang, X.; Huang, W.J. Role of physical exercise in Alzheimer’s disease. Biomedical Reports. Vol. 4. Num. 4. 2016. p. 403-407.

-Craft, S.; Watson, G.S. Insulin and neurodegenerative disease: shared and specific mechanisms. The Lancet Neurology. Vol. 3. Num. 3. 2004. p. 169-178.

-De La Monte, S.M.; Wands, J.R. Alzheimer’s disease is type 3 diabetes–evidence reviewed. Journal of Diabetes Science and Technology. Vol. 2. Num. 6. 2008. p. 1101-1113.

-Deak, F.; Sonntag, W.E. Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. The Journal of Gerontololy. Series A, Biology Sciences and Mededical Sciences. Vol. 67. Num. 6. 2012. p. 611-625.

-Diegues, J.C.; Pauli, J.R.; Luciano, E.; de Almeida Leme, J.A.C.; de Moura, L.P.; Dalia, R.A.; de Araújo, M.B.; Sibuya, C.Y.; de Mello, M.A.; Gomes, R.J. Spatial memory in sedentary and trained diabetic rats: molecular mechanisms. Hippocampus. Vol. 24. Num. 6. 2014. p. 703-711.

-Dineley, K.T.; Jahrling, J.B.; Denner, L. Insulin resistance in Alzheimer’s disease. Neurobiology Disease. Vol. 72PA. 2014. p. 92-103.

-Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Hu, L.; Morris, K.S.; White, S.M.; Wójcicki, T.R.; McAuley, E.; Kramer, A.F. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. Vol. 19, Num. 10. 2009. p. 1030-1039.

-Formiga, F.; Rene, R.; Perez-Maraver, M. Dementia and diabetes: casual or causal relationship? Medicina Clínica (Barcelona). Vol. 144. Num. 4. 2015. p. 176-180.

-Golubnitschaja, O. Neurodegeneration: accelerated ageing or inadequate healthcare? EPMA Journal. Vol. 1. Num. 2. 2010. p. 211-215.

-Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. The Journal ofClinical Endocrinology & Metabolism. Vol. 89. Num. 6. 2004. p. 2595-2600.

-Gustafson, D.; Rothenberg, E.; Blennow, K.; Steen, B.; Skoog, I. An 18-year follow-up of overweight and risk of Alzheimer disease. Archives of Internal Medicine. Vol. 163. Num. 13. 2003. p. 1524-1528.

-Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews Molecular Cell Biology. Vol. 8. Num. 2. 2007. p. 101-112.

-Hernandez, S.S.S.; Sandreschi, P.F.; da Silva, F.C.; Arancibia, B.A.V.; da Silva, R.; Gutierres, P.J.B.; Andrade, A. What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. Journal of Aging and Physical Activity. Vol. 23. Num. 4. 2015. p; 659-668.

-Kim, B.K.; Shin, M.S.; Kim, C.J.; Baek, S.D.; Ko, Y.C.; Kim, Y.P. Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats. Journal of Exercise Rehabilitation. Vol. 10. Num. 1. 2014. p. 2-8.

-Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Alternative Medicine Review. Vol. 14. Num. 4. 2009. p. 373-379.

-Lee, I.H.; Seo, E.J.; Lim, I.S. Effects of aquatic exercise and CES treatment on the changes of cognitive function, BDNF, IGF-1, and VEGF of persons with intellectual disabilities. Journal of Exercise Nutrition & Biochemistry. Vol. 18. Num. 1. 2014. p. 19-24.

-Lokken, K.L.; Boeka, A.G.; Austin, H.M.; Gunstad, J.; Harmon, C.M. Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surgery for Obesity and Related Diseases. Vol. 5. Num. 5. 2009. p. 547-552.

-Ma, L.; Feng, M.; Qian, Y.; Yang, W.; Liu, J.; Han, R.; Zhu, H.; Li, Y. Insulin resistance is an important risk factor for cognitive impairment in elderly patients with primary hypertension. Yonsei Medical Journal. Vol. 56. Num. 1. 2015. p. 89-94.

-Michalak, A.; Mosinska, P.; Fichna, J. Common links between metabolic syndrome and inflammatory bowel disease: Current overview and future perspectives. Pharmacological Reports. Vol. 68. Num. 4. 2016. p. 837-846.

-Mittal, K.; Mani, R.J.; Katare, D.P. Type 3diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer’s disease. Scientific Reports. Vol. 6. 2016. p. 25589.

-Mond, J.M.; Rodgers, B.; Hay, P.J.; Darby, A.; Owen, C.; Baune, B.T.; Kennedy, R.L. Obesityand impairment in psychosocial functioning in women: the mediating role of eating disorder features. Obesity (Silver Spring). Vol. 15. Num. 11. 2007. p. 2769-2779.

-Nguyen, J.C.D.; Killcross, S.; Jenkins, T.A. Obesity and cognitive decline: role of inflammation and vascular changes. Frontiers in Neuroscience. Vol. 8. Num. 375. 2014. p. 1-8.

-Ohman, H.; Savikko, N.; Strandberg, T.E.; Kautiainen, H.; Raivio, M.M.; Laakkonen, M.L.; Tilvis, R.; Pitkälä, K.H. Effects of exercise on cognition: the finnishAlzheimer disease exercise trial: a randomized, controlled trial. Journal of American Geriatrics Society. Vol. 64. Num. 4. 2016. p. 731-738.

-Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective effects of physical exercise in alzheimer’s diseaseand parkinson's disease: a narrative review. Journal of Clinical Neurology. Vol. 11. Num. 3. 2015. p. 212-219.

-Phillips, C.; Baktir, M.A.; Srivatsan, M.; Salehi, A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience. Vol. 8. Num. 170. 2014. p. 1-16.

-Rao, A.K.; Chou, A.; Bursley, B.; Smulofsky, J.; Jezequel, J. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American Journal of Occupational Therapy. Vol. 68. Num. 1. 2014. p. 50-56.

-Redila, V.A.; Christie, B.R. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience. Vol. 137. Num. 4. 2006. p. 1299-1307.

-Sabia, S.; Nabi, H.; Kivimaki, M.; Shipley, M.J.; Marmot, M.G.; Singh-Manoux, A. Health behaviors from early to late midlife as predictors of cognitive function: The Whitehall II study. American Journal of Epidemiology. Vol. 170. Num. 4. 2009. p. 428-437.

-Slusher, A.L.; Whitehurst, M.; Zoeller, R.F.; Mock, J.T.; Maharaj, A.; Huang, C.J. Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals. Journal of Neuroendocrinology. Vol. 27. Num. 5. 2015. p. 370-376.

-Solfrizzi, V.; Panza, F.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Grigoletto, F.; Maggi, S.; Del Parigi, A.; Reiman, E.M.; Caselli, R.J.; Scafato, E.; Farchi. G.; Capurso, A. Italian Longitudinal Study on Aging Working Group.Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology. Vol. 63. Num. 10. 2004. p. 1882-1891.

-Stanford, K.I.; Goodyear, L.J. Exercise regulation of adipose tissue. Adipocyte. Vol. 5. Num. 2. 2016. p. 153-162.

-Verdile, G.; Keane, K.N.; Cruzat, V.F.; Medic, S.; Sabale, M.; Rowles, J.; Wijesekara, N.; Martins, R.N.; Fraser, P.E.; Newsholme, P. Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediators of Inflammation. Vol. 2015. Num. 6. 2015. p. 105828.

-Viola, K.L.; Klein, W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathologica. Vol. 129. Num. 2. 2015. p. 183-206.

-Watanabe, T.; Miyazaki, A.; Katagiri, T.; Yamamoto, H.; Idei, T.; Iguchi, T. Relationship between serum insulin-like growth factor-1 levels and Alzheimer’s disease and vascular dementia. Journal of American Geriatrics Society. Vol. 53. Num. 10. 2005. p. 1748-1753.

-Watts, A.S.; Loskutova, N.; Burns, J.M.; Johnson, D.K. Metabolic syndrome and cognitive decline in early Alzheimer’s disease and healthy older adults. Journal of Alzheimer's Disease. Vol. 35. Num. 2. 2013. p. 253-265.

-Westwood, A.J.; Beiser, A.; Decarli, C.; Harris, T.B.; Chen, T.C.; He, X.M.; Roubenoff, R.; Pikula, A.; Au, R.; Braverman, L.E.; Wolf, P.A.; Vasan, R.S.; Seshadri, S. Insulin-like growth factor-1 and risk of Alzheimer dementia and brain atrophy. Neurology. Vol. 82. Num. 18. 2014. p. 1613-1619.

-Whitmer, R.A.; Gunderson, E.P.; Barrett-Connor, E.; Quesenberry, C.P.J.; Yaffe, K. Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ. Vol. 330. Num. 7504. 2005. p. 1360.

-Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin JD,Greenberg ME,Spiegelman BM.Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metabolism. Vol. 18. Num. 5. 2013. p. 649-659.

-Yaffe, K.; Haan, M.; Blackwell, T.; Cherkasova, E.; Whitmer, R.A.; West, N. Metabolic syndrome and cognitive decline in elderly Latinos: findings from the Sacramento Area Latino Study of Aging study. Journal of American Geriatrics Society. Vol. 55. Num. 5. 2007. p. 758-762.

-Zhang, T.; Pan, B.S.; Sun, G.C.; Sun, X.; Sun, F.Y. Diabetes synergisticallyexacerbates poststroke dementia and tau abnormality in brain. Neurochemistry International. Vol. 56. Num. 8. 2010. p. 955-961.

-Zhao, W.Q.; Alkon, D.L. Role of insulin and insulin receptor in learning and memory. Molecular and Cellular Endocrinology. Vol. 177. Num. 1-2. 2001. p. 125-134.

-Zhao, W.Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochimica et Biophysica Acta. Vol. 1792. Num. 5. 2009. p. 482-496.

Publicado
2018-06-25
Cómo citar
Cerrone, L. A., La Scala Teixeira, C. V., Rebelo, R. A., Caranti, D. A., & Gomes, R. J. (2018). Diabetes mellitus tipo 3 y ejercicio físico: relaciones entre obesidad, resistencia a la insulina y trastornos cognitivos. Revista Brasileña De Obesidad, Nutrición Y Pérdida De Peso, 12(71), 336-345. Recuperado a partir de https://www.rbone.com.br/index.php/rbone/article/view/706
Sección
Artículos Científicos - Original