Modulazione dei livelli di insulina in base al consumo di carboidrati ed effetti sul tessuto adiposo durante la perdita di peso: una revisione
Abstract
La prevenzione dell'obesità e la perdita di peso non sono processi semplici e qualsiasi modello accurato di obesità deve includere processi fisiologici noti che ostacolano la perdita di peso e promuovono l'aumento di peso. Nonostante tutti i progressi della scienza, c'è un aumento dell'obesità, ancora associata all'insulino-resistenza e alla sindrome metabolica. Esistono prove che le diete a basso contenuto di carboidrati aiutano nella remissione del diabete mellito di tipo 2, con un miglioramento del profilo lipidico e una riduzione del grasso epatico. La funzione dell'insulina è quella di coordinare l'utilizzo del glucosio e degli acidi grassi liberi, esercitando un controllo anabolico e riducendo la concentrazione circolante di tutti i combustibili metabolici. Questa azione fisiologica ha guidato il modello insulinico dell'obesità a sottolineare che le diete ricche di carboidrati aumenterebbero il peso aumentando la secrezione di insulina. La presente review mira a studiare come la modulazione dell'insulina attraverso il consumo di carboidrati nella dieta possa promuovere effetti sul tessuto adiposo durante la perdita di peso. Attraverso la letteratura disponibile, si può concludere che le diete povere di carboidrati sono strumenti utili in alcune situazioni cliniche, ma sopravvalutate nell'aiutare la perdita di peso. Meta-analisi pubblicate di alta qualità indicano poca o nessuna differenza, scartando indirettamente l'ipotesi che la modulazione dei livelli di insulina da parte del consumo di carboidrati promuoverebbe una maggiore riduzione del tessuto adiposo. Si raccomanda, se questo modello dietetico è prescritto, di monitorare l'aderenza, nel tentativo di renderlo completo dal punto di vista nutrizionale e di evitare possibili focolai di disturbi alimentari.
Riferimenti bibliografici
-Augustin, L.S.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Willett, W.C.; Astrup, A.; Barclay, A.W.; Björck, I.; Brand-Miller, J.C.; Brighenti, F.; Buyken, A.E.; Ceriello, A.; La Vecchia, C.; Livesey, G.; Liu, S.; Riccardi, G.; Rizkalla, S.W.; Sievenpiper, J.L.; Trichopoulou, A.; Wolever, T.M.S.; Baer-Sinnott, S.; Poli, A. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutrition, Metabolism and Cardiovascular Diseases. Vol. 25. Num. 9. 2015. p. 795-815.
-Barazzoni, R.; Deutz, N.E.P.; Biolo, G.; Bischoff, S.; Boirie, Y.; Cederholm, T.; Cuerda, C.; Delzenne, N.; Sanz, M.L.; Ljungqvist, O.; Muscaritoli, M.; Pichard, C.; Preiser, J.C.; Sbraccia, P.; Singer, P.; Tappy, L.; Thorens, B.; Van Gossum, A.; Vettor, R.; Calder, P.C. Carbohydrates and insulin resistance in clinical nutrition: Recommendations from the ESPEN expert group. Clinical Nutrition. Vol. 36. Num. 2. 2017. p. 355-363.
-Barroso, W.K.S.; Souza, A.L.L. Obesidade, Sobrepeso, Adiposidade Corporal e Risco Cardiovascular em Crianças e Adolescentes. Arquivos Brasileiros de Cardiologia. Vol. 115. Num. 2. 2020. p. 172-173.
-Blüher, M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. Vol. 15. Num. 5. 2019. p.288-298.
-Borgi, C.; Taktouk, M.; Nasrallah, M.; Isma’eel, H.; Tamim, H.; Nasreddine, L. Dietary Glycemic Index and Glycemic Load Are Not Associated with the Metabolic Syndrome in Lebanese Healthy Adults: A Cross-Sectional Study. Nutrients. Vol. 12. Num. 5. 2020. p. 1394.
-Brasil. Ministério da Saúde. Vigitel Brasil 2020: vigilância de fatores de risco e proteção para doenças crônicas por inquérito telefônico: estimativas sobre frequência e distribuição sociodemográfica de fatores de risco e proteção para doenças crônicas nas capitais dos 26 estados brasileiros e no Distrito Federal em 2020. Brasília: Ministério da Saúde. 2021.
-Brouns, F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable? European Journal of Nutrition. Vol. 57. Num. 4. 2018. p. 1301-1312.
-Bueno, N.B.; Melo, I.S.V.; Oliveira, S.L.; Ataide, T.R. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: A meta-analysis of Randomised controlled trials. British Journal of Nutrition. Vol. 110. Num. 7. 2013. p. 1178-1187.
-Camps, S.G.; Kaur, B.; Quek, R.Y.C.; Henry, C.J. Does the ingestion of a 24 hour low glycaemic index Asian mixed meal diet improve glycaemic response and promote fat oxidation? A controlled, randomized cross-over study. Nutrition Journal. Vol. 16. Num. 1. 2017. p. 43.
-Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis Reviews in Endocrine and Metabolic Disorders. Reviews in Endocrinology and Metabolic Disorders. Vol. 21. Num. 1. 2020. p. 5-16.
-Churuangsuk, C.; Kherouf, M.; Combet, E.; Lean, M. Low-carbohydrate diets for overweight and obesity: a systematic review of the systematic reviews. Obesity Reviews. Vol. 19. Num. 12. 2018. p. 1700-1718.
-Cocate, P.G.; Pereira, L.G.; Marins, J.C.B.; Cecon, P.R.; Bressan, J.; Alfenas, R.C.G. Metabolic responses to high glycemic index and low glycemic index meals: A controlled crossover clinical trial. Nutrition Journal. Vol. 10. 2011. p.1.
-Coe, S.; Ryan, L. Impact of polyphenol-rich sources on acute postprandial glycaemia: A systematic review. Journal of Nutritional Science. Vol. 5. 2016. p. e24.
-Dall’Asta, M.; Del Rio, D.; Tappy, L.; Poti, F.; Agostoni, C.; Brighenti, F. Critical and emerging topics in dietary carbohydrates and health. International Journal of Food Sciences and Nutrition. Vol. 71. Num. 3. 2020. p. 286-295.
-Deemer, S.E.; Plaisance, E.P.; Martins, C. Impact of ketosis on appetite regulation - a review. Nutrition Research. Vol. 77. 2020. p. 1-11.
-Dorenbos, E.; Drummen, M.; Adam, T.; Rijks, J.; Winkens, B.; Martínez, J.A.; Navas-Carretero, S.; Stratton, G.; Swindell, N.; Stouthart, P.; Mackintosh, K.; Mcnarry, M.; Tremblay, A.; Fogelholm, M.; Raben, A.; Westerterp-Plantenga, M.; Vreugdenhil, A. Effect of a high protein/low glycaemic index diet on insulin resistance in adolescents with overweight/obesity – A preview randomized clinical trial. Pediatric Obesity. Vol. 16. Num. 1. 2021. p. e12702.
-Ebbeling, C.B.; Feldman, H.A.; Klein, G.L.; Wong, J.M.W.; Bielak, L.; Steltz, S.K.; Luoto, P.K.; Wolfe, R.R.; Wong, W.W.; Ludwig, D.S. Effects of a low carbohydrate diet on energy expenditure during weight loss maintenance: Randomized trial. The BMJ. Vol. 363. 2018. p.K4583.
-Edgerton, D.S.; Kraft, G.; Smith, M.; Farmer, B.; Williams, P.E.; Coate, K.C.; Printz, R.L.; O’Brien, R.M.; Cherrington, A.D. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI insight. Vol. 2. Num. 6. 2017. p. e91863.
-Ferretti, F.; Mariani, M. Simple vs. Complex Carbohydrate Dietary Patterns and the Global Overweight and Obesity Pandemic. International Journal fo Environmental Research and Public Health. Vol. 14. Num. 10. 2017. p. 1174.
-Foley, P.J. Effect of low carbohydrate diets on insulin resistance and the metabolic syndrome. Current Opinion of Endocrinology Diabetes and Obesity. Vol. 28. Num. 5. 2021. p. 463-468.
-Franco, F.R.J.S. A Atividade Física no Presente Pode Ser a Receita para Evitar os Males da Obesidade e Hipertensão no Futuro. Arquivos Brasileiros de Cardiologia. Vol. 115. Num. 1. 2020. p. 50-51.
-Freire, R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition. Vol. 69. 2020. p. 110549.
-Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.A.; Desai, M.; King, A.C. Effect of low-fat VS low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion the DIETFITS randomized clinical trial. JAMA Journal of the American Medical Association. Vol. 319. Num. 7. 2018. p. 667-679.
-González-Muniesa, P.; Martinez-Gonzalez, M.A.; Hu, F.B.; Despres, J.P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nature Reviews Disease Primers. Vol. 3. 2017. p.17034.
-Hall, K.D.; Bemis, T.; Brychta, R.; Chen, K.Y.; Courville, A.; Crayner, E.J.; Goodwin, S.; Guo, J.; Howard, L.; Knuth, N.D.; Miller 3rd, B.V.; Prado, C.M.; Siervo, M.; Skarulis, M.C.; Walter, M.; Walter, P.J.; Yannai, L. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metabolism. Vol. 22. Num. 3. 2015. p. 427-436.
-Hall, K.D. A review of the carbohydrate-insulin model of obesity. European Journal of Clinical Nutrition. Vol. 72. Num. 1. 2018. p. 183.
-Hall, K.D.; Guo, J.; Courville, A.B.; Boring, J.; Brychta, R.; Chen, K.Y.; Darcey, V.; Forde, C.G.; Gharib, A.M.; Gallagher, I.; Howard, R.; Joseph, P.V.; Milley, L.; Ouwerkerk, R.; Raisinger, K.; Rozga, I.; Schick, A.; Stagliano, M.; Torres, S.; Walter, M.; Walter, P.; Yang, S.; Chung, S.T. Effect of a plant-based, low-fat diet versus an animal-based, ketogenic diet on ad libitum energy intake. Nature Medicine. Vol. 27. Num. 2. 2021. p. 344-353.
-Holesh, J.E.; Aslam, S; Martin, A. Physiology, Carbohydrates. 2021 Jul 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 26 de julho de 2021. Disponível em: <https://pubmed.ncbi.nlm.nih.gov/29083823/>. Acesso em: 12/10/2021.
-Hosseinpour-Niazi, S.; Sohrab, G.; Asghari, G.; Mirmiran, P.; Moslehi, N.; Azizi, F. Dietary glycemic index, glycemic load, and cardiovascular disease risk factors: Tehran Lipid and Glucose Study. Archives of Iranian Medicine. Vol. 16. Num. 7. 2013. p. 401-407.
-Johnston, B.C.; Kanters, S.; Bandayrel, K.; Wu, P.; Naji, F.; Siemieniuk, R.A.; Ball, G.D.C.; Busse, J.W.; Thorlund, K.; Guyatt, G.; Jansen, J.P.; Mills, E.J. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. Journal of the American Medical Association. Vol. 312. Num. 9. 2014. p. 923-933.
-Joslowski, G.; Halim, J.; Goletzke, J.; Gow, M.; Ho, M.; Louie, J.C.Y.; Buyken, A.E.; Cowell, C.T.; Garnett, S.P. Dietary glycemic load, insulin load, and weight loss in obese, insulin resistant adolescents: RESIST study. Clinical Nutrition. Vol. 34. Num. 1. 2015. p. 89-94.
-Juanola-Falgarona, M.; Salas-Salvadó, J.; Ibarrola-Jurado, N.; Rabassa-Soler, A.; Díaz-López, A.; Guasch-Ferré, M.; Hernández-Alonso, P.; Balanza, R.; Bulló, M. Effect of the glycemic index of the diet on weight loss, modulation of satiety, inflammation, and other metabolic risk factors: A randomized controlled trial. American Journal of Clinical Nutrition. Vol. 100. Num. 1. 2014. p. 27-35.
-Karl, J.P.; Cheatham, R.A.; Das S.K.; Hyatt, R.R.; Gilhooly, C.H.; Pittas, A.G.; Lieberman, H.R.; Lerner, D.; Roberts, S.B.; Saltzman, E. Effect of glycemic load on eating behavior self-efficacy during weight loss. Appetite. Vol. 80. 2014. p. 204-211.
-Karl, J.P.; Roberts, S.B.; Schaefer, E.J.; Gleason, J.A.; Fuss, P.; Rasmussen, H.; Saltzman, E.; Das, S.K. Effects of carbohydrate quantity and glycemic index on resting metabolic rate and body composition during weight loss. Obesity. Vol. 23. Num. 11. 2015. p. 2190-2198.
-Kaur, B.; Chin, R.Q.Y.; Camps, S.; Henry, C.J. The impact of a low glycaemic index (GI) diet on simultaneous measurements of blood glucose and fat oxidation: A whole body calorimetric study. Journal of Clinical and Translational Endocrinology. Vol. 4. 2016. p. 45-52.
-Le, T.; Flatt, S.W.; Natarajan, L.; Pakiz, B.; Quintana, E.L.; Heath, D.D.; Rana, B.K.; Rock, C.L. Effects of diet composition and insulin resistance status on plasma lipid levels in a weight loss intervention in women. JAMA Journal of the American Heart Association. Vol. 5. Num. 1. 2016. p. e002771.
-Ludwig, D.S; Ebbeling, C.B. The Carbohydrate-Insulin Model of Obesity: Beyond "Calories In, Calories Out". JAMA Internal Medicine. Vol. 178. Num. 8. 2018. p. 1098-1103.
-Malinowska, A.M.; Mlodzik-Czyzewska, M.A.; Chmurzinska, A. Dietary patterns associated with obesity and overweight: when should misreporters be included in analysis? Nutrition. Vol. 70. 2020. p. 110605.
-McArdle, W.D.; Katch, F.I.; Katch, V.L. Fisiologia do Exercício - Energia, Nutrição e Desempenho Humano. 8ª edição. Rio de Janeiro: Editora Guanabara Koogan. 2016. 1120 p.
-Medina-Remon, A.; Kirwan, R.; Lamuela-Raventos, R.M.; Estruch, R. Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Critical Reviews in Food Science and Nutrition. Vol. 58. Num. 2. 2018. p. 262-296.
-Meng, H.; Matthan, N.R.; Ausman, L.M.; Lichtenstein, A.H. Effect of macronutrients and fiber on postprandial glycemic responses and meal glycemic index and glycemic load value determinations. American Journal of Clinical Nutrition. Vol. 105. Num. 4. 2017. p. 842-853.
-Murphy, N.E.; Carrigan, C.T.; Margolis, L.M. High-Fat Ketogenic Diets and Physical Performance: A Systematic Review. Advances in Nutrition. Vol. 12. Num. 1. 2020. p. 223-233.
-Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Salzano, C.; Savastano, S.; Colao, A. The management of very low-calorie ketogenic diet in obesity outpatient clinic: a practical guide. Journal of Translational Medicine. Vol. 17. Num. 1. 2019. p. 356.
-Nakao, R.; Abe, T.; Yamamoto, S.; Oishi, K. Ketogenic diet induces skeletal muscle atrophy via reducing muscle protein synthesis and possibly activating proteolysis in mice. Scientific Reports. Vol. 9. Num. 1. 2019. p. 19652.
-Oliveira, J.; Figueiredo, L.; Cordás, T.A. Prevalência de comportamentos de risco para transtornos alimentares e uso de dieta “low-carb” em estudantes universitários. Jornal Brasileiro de Psiquiatria. Vol. 68. Num. 4. 2019. p. 183-190.
-Oliveira, J.; Colombarolli, M.S.; Figueredo, L.S.; Cordás, T.A. Cognitive restraint directed at carbohydrates in individuals on low-carb diet with binge eating: the role of guilt about food cravings. Einstein. Vol. 19. 2021. p. eAO5599.
-Pelegrini, A.; Bim, M.A.; Souza, F.U.; Kilim, K.S.S.; Pinto, A.A. Prevalence of overweight and obesity in Brazilian children and adolescents: a systematic review. Revista Brasileira de Cineantropometria & Desempenho Humano. Vol. 23. 2021. p. 1-19.
-Petrisko, M.; Kloss, R.; Bradley, P.; Birrenkott, E.; Spindler, A.; Clayton, Z.S.; Kern, M. Biochemical, Anthropometric, and Physiological Responses to Carbohydrate-Restricted Diets Versus a Low-Fat Diet in Obese Adults: A Randomized Crossover Trial. Journal of Medicinal Food. Vol. 23. Num. 3. 2020. p. 206-214.
-Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Morenga, L.T. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. Vol. 393. Num. 10170. 2019. p. 434-445.
-Sacks, F.M.; Carey, V.J.; Anderson, C.A.M.; Miller 3rd, E.R.; Copeland, T.; Charleston, J.; Harshfield, B.J.; Laranjo, N.; McCarron, P.; Swain, J.; White, K.; Yee, K; Appel, L.J. Effects of high vs low glycemic index of dietary carbohydrate on cardiovascular disease risk factors and insulin sensitivity: The OmniCarb randomized clinical trial. JAMA Journal of the American Medical Association. Vol. 312. Num. 23. 2014. p. 2531-2541.
-Saltiel, A.R. Insulin signaling in the control of glucose and lipid homeostasis. Handbook of Experimental Pharmacology. Vol. 233. 2016. p. 51-71.
-Sanders, T.A.B. How important is the relative balance of fat and carbohydrate as sources of energy in relation to health? Proceedings of the Nutrition Society. Vol. 75. Num. 2. 2016. p. 147-153.
-Silva, C.P.G.; Bittar, C.M.L. Fatores Ambientais e Psicológicos que Influenciam na Obesidade Infantil. Revista Saúde e Pesquisa. Vol. 5. Num. 1. 2012. p. 197-207.
-Sylvetsky, A.C.; Edelstein, S.L.; Walford, G.; Boyko, E.J.; Horton, E.S.; Ibebuogu, U.N.; Knowler, W.C.; Montez, M.G.; Temprosa, M.; Hoskin, M.; Rother, K.I.; Delahanty, L.M.; Diabetes Prevention Program Research Group. A high-carbohydrate, high-fiber, low-fat diet results in weight loss among adults at high risk of type 2 diabetes. Journal of Nutrition. Vol. 147. Num. 11. 2017. p. 2060-2066.
-Tay, J.; Thompson, C.H.; Luscombe-Marsh, N.D.; Wycherley, T.P.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy Jr, W.S.; Brinkworth, G.D. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial. Diabetes, Obesity and Metabolism. Vol. 20. Num. 4. 2018. p. 858-871.
-Thom, G.; Lean, M. Is There an Optimal Diet for Weight Management and Metabolic Health? Gastroenterology. Vol. 152. Num. 7. 2017. p. 1739-1751.
-Tozo, T.A.; Pereira, B.O.; Junior, F.J.M.; Montenegro, C.M.; Moreira, C.M.M.; Leite, N. Medidas Hipertensivas em Escolares: Risco da Obesidade Central e Efeito Protetor da Atividade Física Moderada-Vigorosa. Arquivos Brasileiros de Cardiologia. Vol. 115. Num. 1. 2020. p. 42-49.
-Tricó, D.; Moriconi, D.; Berta, R.; Baldi, S.; Quinones-Galvan, A.; Guiducci, L.; Taddei, S.; Mari, A.; Nannipieri, M. Effects of low-carbohydrate versus mediterranean diets on weight loss, glucose metabolism, insulin kinetics and β-cell function in morbidly obese individuals. Nutrients. Vol. 13. Num. 4. 2021. p. 1345.
-Valenzuela, P.L.; Castillo-García, A.; Lucia, A.; Naclerio, F. Effects of combining a ketogenic diet with resistance training on body composition, strength, and mechanical power in trained individuals: A narrative review. Nutrients. Vol. 13. Num. 9. 2021. p. 3083.
-Vega-López, S.; Venn, B.J.; Slavin, J.L. Relevance of the glycemic index and glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. Vol. 10. 2018. p. 1361.
-Vieira, A.C.; Cardoso, C.K.S. Efeitos de dietas low carb sobre parâmetros nutricionais em indivíduos com excesso de peso: revisando as evidências científicas. Revista Brasileira de Obesidade, Nutrição e Emagrecimento. Vol. 14. Num. 87. 2020. p. 598-607.
-Yang, A.; Mottillo, E.P. Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. The Biochemical Journal. Vol. 477. Num. 5. 2020. p. 985-1008.
-Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the ketogenic diet on glycemic control, insulin resistance, and lipid metabolism in patients with T2DM: a systematic review and meta-analysis. Nutrition and Diabetes. Vol. 10. Num. 1. 2020. p. 38.
-Walitko, E.; Napierata, M.; Bryskiewicz, M.; Fronczyk, A.; Majkowska, L. High-protein or low glycemic index diet-which energy-restricted diet is better to start a weight loss program? Nutrients. Vol. 13. Num. 4. 2021. p. 1086.
-Wang, M.L.; Gellar, L.; Nathanson, B.H.; Pbert, L.; Ma, Y.; Ockene, I.; Rosal, M.C. Decrease in Glycemic Index Associated with Improved Glycemic Control among Latinos with Type 2 Diabetes. Journal of the Academy of Nutrition and Dietetics. Vol. 115. Num. 6. 2015. p. 898-906.
-World Health Organization. Obesity and overweight, 2021. Disponível em: <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight>. Acesso em: 7/09/2021.
Copyright (c) 2022 Fernanda de Melo Lima Araujo , Leonardo Roberto Bosco da Silva, Marcio Leandro Ribeiro de Souza

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale 4.0 Internazionale.
Gli autori che pubblicano in questa rivista accettano i seguenti termini:
Gli autori mantengono i diritti d'autore e concedono alla rivista il diritto di prima pubblicazione, con l'opera contemporaneamente concessa in licenza con una licenza di attribuzione Creative Commons BY-NC che consente la condivisione dell'opera con riconoscimento della paternità dell'opera e pubblicazione iniziale in questa rivista.
Gli autori sono autorizzati ad assumere ulteriori contratti separatamente, per la distribuzione non esclusiva della versione dell'opera pubblicata su questa rivista (es. da pubblicare in un repository istituzionale o come capitolo di libro), con riconoscimento della paternità e pubblicazione iniziale in questa rivista .
Gli autori sono autorizzati e incoraggiati a pubblicare e distribuire il loro lavoro online (ad es. in archivi istituzionali o sulla loro pagina personale) in qualsiasi momento prima o durante il processo editoriale, poiché ciò può generare cambiamenti produttivi, nonché aumentare l'impatto e la citazione del pubblicato lavoro (Vedi L'effetto dell'accesso aperto).